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The mathematics which solved the Enigma machine 
In this document we will be looking at the mathematics necessary to understand how 
the Polish mathematician Marian Rejewski in the late 1930’s was able to break the 
codes of the german cryptomachine Enigma. Rather than writing everything out in de-
tail, I have decided to make the necessary definitions from the theory of permutations, 
and then add a number of exercises in order for students from late high school or college 
to be able to write about this subject in a manuscript or major project, and in that way 
forcing the student to deliver a more personal contribution. This document is mainly 
meant as an instruction in reading the following article: 
 
Chris Christensen. Polish Mathematicians Finding Patterns in Enigma Messages. Ma-
thematics Magazine (Mathematical Association of America), Vol 80, No. 4, Oct. 2007.  
 
This article can be downloaded from my website. The whole idea behind the construc-
tion of Enigma was the desire to have an electro-mechanical device changing letters in a 
text in a systematic way, so that the result will be unreadable for the enemy. Therefore it 
is not a surprise that the mathematics involved is the theory of permutations. Some 
Combinatorics will be needed to calculate the number of combinations.   
 
1BWhat is a permutation? 

A permutation can be regarded as a map interchanging the elements of a given set. If 
this set is { }1,2,3,4,5,6 , then  

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 2 3 4 5 6

4 6 5 1 2 3
 

is the permutation mapping . Another way 
of viewing the same permutation is to focus on images of images. Since the set is finite, 
it is always true, that after a while one will always end up with the starting element. A 
sequence generated in this way is called a cycle. In this case we get a 2-cycle and a 4-
cycle, with the number referring to the number of elements in the actual cycle.  

, , , , og→ → → → → →1 4 2 6 3 5 4 1 5 2 6 3

2 6 3 51 4

 

This explains why we sometimes write the same permutation in cycle-form:  

(14)(2635) 

It is often more convenient to work with the cycle-form: The image-element is just the 
next element in the cycle, unless we are at the end of the cycle, in which case the image 
is the first element in that cycle. The trivial permutation called the identity and denoted 
by I actually does nothing:   

or⎛ ⎞
⎜ ⎟
⎝ ⎠

1 2 3 4 5 6
(1)(2)(3)(4)(5)(6)

1 2 3 4 5 6
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Given two permutations A og B:  
A
B

=
=
 (124)(365)

 (16)(235)(4)
 

The composite of A and B is a new permutation defined in the following way: A maps 1 
to 2 and B maps 2 to 3, hence AB maps 1 to 3. Continuing the same way yields 

AB =(13)(246)(5) 

It is important to point out that I have decided to follow Chris Christensen and Marian 
Rejewski in their choice to let compositions take place from left to right, that is, when 
writing AB then A is understood to be applied before B. There doesn’t seem to be any 
convention in mathematics in favour of one way or the other. Some people prefer to let 
compositions take place from right to left, as is the case with functions and matrices.  
 
We state without proof, that the associative law is valid for permutations, i.e. parenthe-
ses can be placed as desired: ( ) (AB C A BC)= .  
 
 
2BExercise 1 

The commutative law is satisfied if the order of any two permutations in a composition 
doesn’t matter: AB BA= . Prove by finding a counter example that the commutative law 
doesn’t hold for permutations. 
 
 
The inverse of a permutation A is defined as the unique permutation 1A− satisfying the 
following conditions:  
(1)       1 1ogA A I AA I− −= =  

 
3BExercise 2 

Determine the inverse elements of the following permutations:   
a)  A =  (162)(3)(4,5)
b)  B =  (1)(2465)(3)
c)  C =  (123456)

 
 
4BExercise 3 

a) What can be said about the lengths of the cycles of the inverse permutation in com-
parison with the original permutation? 

b) Show that the inverse element of AB  is 1 1B A− − , i.e. show that 1 1( ) 1AB B A− −= −  by 
using definition (1) on the inverse permutation. 
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Given two permutations A and T. Then  is called the conjugate element of A by 
T. In the following we will be looking at an important property, which Marian Rejewski 
used heavily in his attack on Enigma, namely the fact that the cycle-structure, i.e. the 
lengths of the cycles, is preserved under conjugation.  

1T AT−

 
 
5BExercise 4 

Assume that A contains the cycle :   1 2( )ra a a"

(2)       1 2( ) ( ) ( )rA a a a= … … " … …  

Let T be another, arbitrary permutation. Show that ( )1 2( ) ( ) ( )rT a T a T a"
T

 will then be a 
cycle contained in the conjugate permutation , i.e. 1T A−

(3)     ( )1
1 2( ) ( ) ( ) ( ) ( )rT AT T a T a T a− = … … " … …  

Hint: What is the image of the permutation of  when applied to ? The same 
question for , etc? Make use of the fact that 

1T AT−

A a
1( )T a

3a2( )T a 1 2 2( ) , ( )a A a= = , etc.  

 

Explain why the property in exercise 4 means that the cycle-lengths of A and  
are equal in pairs – the permutations are said to have the same cycle-structure.     

1T AT−

 
Later in this document we will be considering a mini-Enigma machine, which has 12 
different letters: a, , so the following exercises will be dea-
ling with permutations of those 12 letters.  

b,c,d,e,f,g,h,i,j,k,l

 
 
6BExercise 5 

Given the two permutations 

A
T

=
=
  (akcj)(b)(dlf)(ehgi)
  (ahib)(cd)(egjfkl)  

Calculate the conjugate element  of A. Can you confirm the statement in Exerci-
se 4, that the cycle-structure is preserved under conjugation?  

1T AT−

 
Making composites with the permutation itself a certain number of times yields the 
identity permutation I. The smallest positive integer n satisfying  is denoted the 
order of the permutation A.  

nA = I

 
 
7BExercise 6 

Try to find a mathematical rule on how to calculate the order of a permutation given it’s 
cycle-structure. Apply the rule on A = (achbf)(di)(eklgj). What is the order of 
the permutation A?  
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In case you don’t already know the function of Enigma, you can study it on the figure 
below. The key for letter s on the keyboard is pressed down, allowing for a signal to go 
to s in the plugboard. At the same time the right rotor N moves forward by one step. 
Since there is no plug in the letter s, the signal goes directly to the Entry Wheel E. Not-
hing happens in that wheel. However in each rotor N, M and L, the letters are permuted 
in accordance with the complicated interior wirings inside those wheels. The same hap-
pens in the Reflector, before the signal is returning back via a different path through the 
rotors and back to the plugboard in the letter f. Because a plug is connected to f, the 
signal is transferred to the letter l in the plugboard before finally the lamp l on the 
lampboard lights up.     
 
16BFigur 1 

Plugboard

Keyboard

Lamps

L

syk

hp c f f

ykr

h c

s

s f

l

M N ER

S

L

 
 
 
In the following you are supposed to solve some of the combinatorial problems in order 
to find the overall number of different settings for the Enigma machine. In the article it 
is described on page 253-255.  
 
8BExercise 7 

a) (Plugboard settings). Show that the number of possible plugboard settings when 
using n plugs, i.e. n connections in the plugboard, is given by the expression below. 
Binomial coefficients are being used. See also on page 253 in the article. 

26 24 22 26 2( 1)
2 2 2 2

!

n

n

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
"
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b) Calculate the number of different plugboard settings for the different values of n 
between 1 and 13 (remember there are 26 letters, so up to 13 pairs are possible!). 
Which number of plugs yields the highest number of combinations? 

c) (Rotor arrangements). Shortly before the beginning of the War only three different 
rotors were in use. They could be placed in every order desired. How many orders 
are possible? Later in the war the Germans used 5 different rotors, from which three 
had to be chosen. How many rotor arrangement orders do that give rise to, inclu-
ding the order of the rotors chosen? 

d) (Ring settings). Each rotor has a ring containing 26 letters. This ring can be moved 
relative to the internal wiring of the rotor and one out of 26 possible settings is 
chosen by fastening the movable ring using a needle. On level with a specific letter 
on the ring is placed a fixed notch. When a pawl reaches that notch, the next wheel 
is advanced by one step. Only the notches on the first two rotors do add to the 
security of Enigma. How many ring settings can be said to exist? (See the article on 
page 254). 

e) (Rotor settings/ground settings). Each of the three rotors has 26 possible starting 
positions, according to which of the 26 letters is on top. How many different rotor 
settings do that account for?  

f) (Total key number). A key contains information about which rotors are being used 
and in what order, the ring settings, the ground settings of the wheels and the plug-
board settings. How many keys are there in total, when we assume it was early in 
the war, when only three different rotors were in use and where only 6 plugs were 
used for the plugboard?   

 
 

9BExercise 8 

Remember the Enigma machine is an electro-mechanical realization of a poly- alphabe-
tical substitution cipher, like the Vigenère cipher. How many letters do one need to 
press before the Enigma machine repeats a permutation (or alphabet)? See the article 
page 251.  
 
 
Each time pressing a letter on the keyboard, the first rotor N advances by one step. That 
way it is ensured that a new alphabet is being used when decrypting the next letter. In 
the following we need to represent the action that wheel N advances one step by using a 
permutation: P: (abcdefghijklmno .  pqrstuvwxyz)
 
 
In the following let’s assume we are dealing with a mini-Enigma machine containing 12 
letters only. The permutation, representing the action that wheel N moves forward by 
one step is then given by: .  P =(abcdefghijkl)
 
 



© Erik Vestergaard – www.matematiksider.dk   8

10BExercise 9 

Assume that the internal wiring of the first rotor N gives rise to the permutation:  

N = (akcj)(b)(dlf)(ehgi) 

Show that if you include the action of the wheel advancing one step, represented by the 
permutation P mentioned above, the combined action of the stepping forward and the 
effect of the wheel is represented by the permutation 1PNP− . Calculate the value of this 
composition in the actual situation. Hint: Use the result of exercise 4, observing that 

 is a conjugation of N by 1PNP− 1T P−=  (Remember 1 1( )− −P P= ). 
 

11BExercise 10 

Let’s still work with the mini-Enigma machine with 12 letters. In the following it is 
assumed that wheel 2 and 3, i.e. M and L, don’t move during the encryption, only the 
first wheel N moves! We also assume that 4 pairs of letters are connected with plugs in 
the plugboard, represented by the following permutation:  

S:  (ai)(bc)(d)(e)(fh)(gj)(k)(l)

The permutation moving the first wheel one step forward is represented by: 

P:  (abcdefghijkl)

The wirings inside the wheels can be represented by arbitrary permutations, say: 

N:   (alehbfcikj)(gd)
M:  (a)(bikfd)(eghl)(cj)
L:  (adgihljk)(bcef)

Remember that the reflector is acting as a permutation, consisting of six 2-cycles, say:  

R:  (ac)(bl)(de)(fk)(gi)(hj)

a) Calculate the composition 1 1 1 1 1SPNP MLRL M PN P S 1− − − − − −  representing the permu-
tation associated with the first key-press. What is the image of a? Hint: For clarity, 
write out the permutations in the correct order below each other and apply the per-
mutations in succession.  

b) Show that ( ) ( ) 11 1 1 1 1 1 1 1SPNP MLRL M PN P S SPNP ML R SPNP ML
−− − − − − − − −= . Hint: 

Use the result of exercise 3b).  
c) The permutation representing the reflector R consists entirely of transpositions, i.e. 

2-cycles. Use b) and the statement in exercise 4 to conclude, that also the permuta-
tion representing the first key-press consists entirely of 2-cycles. The same property 
applies of course to all the following key-presses!  

d) Use c) to conclude that the Enigma machine is self-reciprocal, i.e. when typing the 
encrypted text on Enigma – using the same settings as when the text was decrypted 
– one get the plain text!  

e) Explain why the property in d) was important for the Germans?  
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f) Why is it impossible for a letter to be encrypted into the same letter? This property 
was a severe weakness of Enigma and used by the people at Bletchley Park to break 
the daily code. Hint: Assume by contrast that one letter was encrypted into itself. 
Explain why that would imply the presence of a 1-cycle in the following permuta-
tion  associated with the first key press?   1 1 1 1 1SPNP MLRL M PN P S− − − − − 1−

1

 
On page 257 in the article is mentioned the concept referred to as depth: When encryp-
ting messages a whole day using the same key, the opponent receives a lot of statistics, 
because the first letter in the messages always are encrypted using the same alphabet 
that day. The same is true for the second letter of each message and so on. That’s the 
reason why the Germans decided to apply double encryption. Besides applying the daily 
key delivered in German codebooks, every message was also encrypted using a message 
key. The message key consisted of three letters indicating the ground-settings of the 
rotors N, M and L. The plain text was first encrypted using the message key, the mes-
sage key was then written twice and put in front of the decrypted message and finally 
the whole thing was encrypted using the daily key. When a German operator decrypted 
using the daily key from his codebook, he could read the message key as the first three 
letters in the document, say nku. He then adjusted the rotors, so the rotor N was in start-
position n, rotor M in startposition k and rotor L in startposition u. Finally the plain text 
was achieved by decrypting the rest of the document using those settings! The Germans 
made just one fatal mistake: Because the reception of signals sometimes caused pro-
blems, they wrote the message key twice. This habit was one Rejewski immediately re-
cogniced and used: Although he didn’t know the message key nkunku he was sure 
that this whole day the 1st and 4th letter in the crypto text originated from the same let-
ter! Same conclusion holds regarding 2nd and 5th letter and 3rd and 6th letter.  
 
On page 257 in the article it is explained how Rejewski introduced six more 
permutations A, B, C, D, E and F. When pressing a key on the keyboard another letter 
lights up on the lamp board, depending on what key was pressed. This action can be 
described mathematically by a permutation: A is the permutation representing the first 
key press, B is representing the second key press, etc. Let S be the permutation 
associated with the action of the plugboard, and let N, M and L represent the action of 
the three rotors. Finally let R represent the permutation associated with the reflector. 
This means that A can be written in the following way, as indicated in exercise 10a): 

(4)      1 1 1 1 1A SPNP MLRL M PN P S− − − − − −=  

Remark, that there are some errors in the article in the expressions for A and D on page 
259. The author Chris Christensen has pointed this out to me. The expressions of the 
same quantities are however stated correctly later on page 265.  
 
12BExercise 11 

Explain why A in (4) is the permutation representing the result of the first key press. 
Hint: Remember exercise 9.    
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In the same way the permutation representing the 4th key press can be expressed as: 

(5)     4 4 1 1 1 4 1D SP NP MLRL M N P S P 4− − − − − −=  

Here  is representing the action of the rotor after it has moved forward by 4 
steps. Remember that the correctness of (4) and (5) only holds true under the assump-
tion that only the first rotor moves during the key presses. If the notch on the first wheel 
activates the advancement of the second wheel, the above analysis is false. Fortunately 
this doesn’t occur too often, since the alphabet contains 26 letters!    

4P NP−4

4

 
13BExercise 12 

a) Show using the technique from page 259 that:  

(6)  
1 1 1 1 1

11
1 4 4 4 1 1 4 1

4

where
P PNP MLRL M PN P

AD SPP S
P P NP MLRL M P N P

− − − − −
−

− − − − −

⎧ =⎪= ⎨
=⎪⎩

 

Remember correcting the errors in the expressions for A and D on page 259 men-
tioned earlier. Explain each step in the computations on page 259.  

b) Why are  and  independent of the plugboard setting?  1P 4P
c) Use (6) including the conclusion of exercise 4 to explain why the cycle-structure in 

the permutation AD is independent of the plugboard settings.  

 

We still need to explain why the permutation AD from exercise 12 is important. It turns 
out that we can say something about this permutation, because the Germans wrote the 
message key twice! We need to go back to page 258: First however it needs to be emp-
hasized that the Enigma machine is self-reciprocal, meaning that if the user types in the 
decrypted message using the exact same settings, he will get the plain text! This proper-
ty was investigated in exercise 10d). This is of course a very simple decryption procedu-
re and makes it especially convenient in the middle of the battlefield!   
 

14BExercise 13 

Like on page 258, we assume the plain text nkunku for the message key is being en-
crypted as JHNQBG, using the daily key.  
a) Explain why the permutation AD is mapping the first letter J into the 4th letter Q? 

Hint: Remember that Enigma is self-reciprocal, according to exercise 10d).  
b) Explain how it is possible to reconstruct the entire permutation AD, if sufficiently 

many encrypted messages was intercepted during one single day?  

 
When AD is completely known, the length of the cycles can be computed. Exercise 12c) 
proves that the cycle-structure is independent of the plugboard settings. Any changes in 
the plugboard connections will of course imply changes in the permutation, but the 
length of the cycles will be the same. This observation was a major victory for 
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Rejewski, since in reality it meant that he could “separate the plugboard from the rest of 
the machine”. The plugboard had in fact been introduced by the Germans to tremen-
dously increase the number of combinations in order to make a brute force attack on the 
machine practically impossible within a decent timeframe! Using mathematics the Pole 
had succeeded in finding a quantity (the cycle-lengths), which was invariant under any 
changes in the plugboard settings!  
 

15BExercise 14 

Explain how Rejewski was able to use the cycle-lengths to find the daily key? (See page 
259-261 in the article).  

 
The mathematics described in this document is an important part of the tools used to 
break Enigma shortly before World War II. However Rejewski was also able to deter-
mine the inner wiring in each rotor, using mathematical arguments. That way he was 
able to construct a true copy of Enigma, without ever having laid hands on a real Enig-
ma machine! You can read more about this on page 263-268. The reader is welcome to 
investigate this on his own.  
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