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The 2016 Vela glitch observed by the Mt Pleasant radio telescope
provides the first opportunity to study pulse-to-pulse dynamics of
a pulsar glitch, opening up new possibilities to study the neutron
star’s interior. We fit models of the star’s rotation frequency to
the pulsar data, and present three new results. First, we constrain
the glitch rise time to less than 12.6 s with 90% confidence, almost
three times shorter than the previous best constraint. Second, we
find definitive evidence for a rotational-frequency overshoot and
fast relaxation following the glitch. Third, we find evidence for a
slow-down of the star’s rotation immediately prior to the glitch.
The overshoot is predicted theoretically by some models; we dis-
cuss implications of the glitch rise and overshoot decay times on
internal neutron-star physics. The slow down preceding the glitch
is unexpected; we propose the slow-down may trigger the glitch by
causing a critical lag between crustal superfluid and the crust.

Pulsar glitches, rotational irregularities of otherwise stably rotating
neutron stars, are believed to be caused by the complex interplay be-
tween micro- and macrophysical properties of the star’s internal com-
ponents. One model posits that superfluid vortices in the inner crust
suddenly unpin, transferring angular momentum to the star’s lattice
crust1. This is seen as an increase in the frequency of pulsations. Such
models are difficult to verify; the internal components of the star are
shielded from view and their behavior has to be inferred indirectly. Un-
til recently, radio observations of glitches were limited to observations
before and after the glitch, but not during. The detailed morphology
of glitch dynamics (e.g., the glitch rise time) is therefore not well con-
strained or understood. In 2016, the first pulse-to-pulse observations
of a glitch were made using the University of Tasmania Mt Pleasant
26 m radio telescope2. Those observations showed variations in pulse
shape of four pulses starting 20 rotations before the inferred time of the
glitch, which are attributed to variations in the magnetospheric state. A
preliminary estimate of ∼ 4.4 s for the glitch rise time was given.

In this Article, we provide a detailed pulse-to-pulse analysis of the
glitch morphology. Our main results are three-fold. First, we con-
strain the glitch rise time to less than 12.6 s with 90% confidence. We
connect this with internal neutron-star physics using a body-averaged
description of the components participating in the glitch. Second, we
show that a frequency overshoot —an increase in the rotation frequency
above the post-glitch equilibrium value — and subsequent fast relax-
ation exist immediately following the glitch, in agreement with the only
two previous high time-resolution observations of Vela glitches3, 4, and
as explained by several models of neutron-star glitches5–8. Third, we
show that the glitch may be preceded by an initial precursor slow-down,
whereby the crust of the star slowed before rapidly speeding up; we
speculate that this preceding slow-down of the pulsar’s rotation trig-
gered the glitch.

In the superfluid vortex model of pulsar glitches, the star’s crust,
and components tightly coupled to it, spin down due to external elec-
tromagnetic torques. The crustal superfluid is decoupled from the lat-
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Figure 1 | Rotational frequency evolution: we fit a constant-frequency model in
200 s-long sliding windows. The frequency and time are given relative to nominal
values; see text for details. The sliding window elongates features with respect
to their true temporal evolution, and suppresses stochastic fluctuations of the fre-
quency. Despite this, the largest fluctuations can be seen immediately following
the glitch (the overshoot) and immediately prior to the glitch (the precursor slow-
down).

tice as a result of vortex pinning, implying a lag develops between
the superfluid’s angular velocity Ωsf and the crust’s angular velocity
Ωcrust; Ωlag ≡ Ωsf − Ωcrust > 0. When Ωlag reaches a critical value
Ωcrit, some mechanism initiates the glitch, simultaneously releasing a
large number of vortices. The superfluid’s excess angular momentum
is transferred to the crust, producing the observed spin up. The spe-
cific trigger for the angular-momentum transfer is not well understood,
although speculation abounds9–16.

We show there exist fluctuations of Vela’s spin period prior to the
glitch, see Fig. 1, and speculate that Ωlag > Ωcrit is reached due to a
single, relatively large stochastic fluctuation. This is independent of the
glitch trigger mechanism, but provides a means for reaching the critical
lag between superfluid and rigid crust; we discuss implications below.

1 Frequency evolution
For a model-agnostic view of the pulsar’s evolution, we fit17–19

a constant-frequency model to 200 s-long data segments, sliding this
window throughout the data (for details, see the Methods section). In
Fig. 1 we show the median frequency and 90% credible interval for
each window. The frequency evolution on the vertical axis is given as
the difference between the inferred frequency and a nominal value of
11.186433 Hz. Times are relative to the solar-system barycentre time
of the fitted glitch MJD 57734.48499062. As we detail below, this anal-
ysis method allows for a powerful comparison with physical models of
pulsars’ rotational evolution. The glitch can clearly be seen near time
zero. We caution that one cannot use this plot to find the glitch rise time
as the sliding window time averages the frequency evolution, thereby
elongating such features. The time window also suppresses the am-
plitude of features whose timescale is shorter than the window length.
Despite this, Fig. 1 shows stochastic fluctuations in the frequency evo-

1

ar
X

iv
:1

90
7.

01
12

4v
1 

 [
as

tr
o-

ph
.H

E
] 

 2
 J

ul
 2

01
9



model f(t) parameters log10B

Hs ∆fr = ∆fd = 0 —
H1 ∆fr 6= 0, ∆fd = 0 −1.7
H2 {∆fr,∆fd} 6= 0 0.38
H2+p see Eq. (3) 2.8

Table 1 | Definitions and Bayes factors for the four primary models tested in this
Article, see Eq. (1) and the consistency relation. The final column is the log-
Bayes factor between each model and the step-glitch modelHs. Uncertainties on
the log-Bayes factors are . 0.2.

lution for the ∼ 2000 s before and after the glitch. The largest fluctu-
ations are immediately before, and immediately after the glitch. This
motivates the more thorough analysis detailed below.

To quantitatively analyse the frequency evolution, we define three
models. The most general of these is H2, where rotational changes are
characterised by a constant term plus two exponentials,

f2(t) = f0 +H(t−tg)
[
∆f + ∆fre

−(t−tg)
τr + ∆fde

−(t−tg)
τd

]
,

(1)

where H(t − tg) is the Heaviside step function, tg is the glitch time,
and ∆f,∆fr,∆fd are the glitch magnitude and amplitudes of each
exponential term. Equation (1) is supplemented by the relation ∆f +
∆fr + ∆fd = 0 ensuring the frequency evolution is continuous at
the glitch. This relation, along with positive log-uniform priors on ∆f
and ∆fd imply ∆fr ≤ 0; in Eq. (1), the first exponential therefore
describes the “rise” in the frequency on time-scale τr , while the second
exponential describes a “decay” in frequency on time-scale τd.

Models Hs and H1, specified in Tab. 1, are limiting cases of H2.
These phenomenological models are motivated by analytic solutions to
coupled rigid-body problems, discussed later where we also introduce
a final model H2+p.

For each model, we integrate the frequency evolution to obtain the
phase evolution, which we invert to obtain the model-predicted arrival
time for each pulse. A likelihood of the model given the data is calcu-
lated by modelling the pulse arrival time as a sum of the deterministic
arrival time predicted by the timing model, and a zero-mean Gaussian
process with unknown variance. Using this likelihood and a suitable set
of priors for the model parameters, we infer their posterior distributions
and the evidence for the model using PyMultiNest20–22. Complete
descriptions of the likelihood and prior are given in the Methods.

The simplest model in Tab. 1, Hs—step glitch, ignores the com-
plex morphology of the glitch and models the frequency evolution as
a simple step function of amplitude ∆f at time tg . We use this as a
base-model against which we compare all other models in Tab. 1. For
the Hs model, we infer a glitch magnitude ∆f = 16.11+0.04

−0.04 µHz and
time, tg = −0.31+2.74

−2.78 s (given relative to the reported value) consis-
tent with the initial obsevation2.

2 Glitch rise time
We analyse the rise time using a simple, physically-motivated ref-

erence model; a body-averaged model with two uncoupled spinning
components that suddenly couple, has equations of motion that can
be integrated to give a model with a single exponential rise time τr23,
corresponding to model H1 in Tab. 1. In the limit where τr is much
smaller than the pulse period, the H1 model is equivalent to the step-
glitch model Hs.

In Fig. 2, we show the τr posterior for theH1 model. The posterior
peaks at zero; we cannot resolve the rise time of the glitch. This is con-
sistent with the Bayes factor betweenH1 andHs being in favour of the
simpler step-glitch model; Tab. 1. Nevertheless, the τr posterior gives

0 5 10 15 20 25 30 35 40

glitch rise time τr [s]

0.000

0.025

0.050

0.075

0.100

0.125

P
(τ
r
)

Figure 2 | Posterior distribution p(τr) for the glitch rise time, τr . The dark
region marks the 90% confidence interval τr ≤ 12.6 s. The distribution peaks at
zero, consistent with the Bayes factor which supports the simplerHs model.

a 90% upper limit of τr ≤ 12.6 s. This improves upon the previous
best upper limit on the rise time of the 2004 Vela glitch of τr . 30 s4.

We also fit a model with a logistic function such that f(t) ∝
1/

(
1 + e−t/τr

)
. While the functional form differs, it captures a sim-

ilar idea of a rise in frequency. Results are similar to theH1 model; the
Bayes factor favours the step glitch, with an upper limit τr ≤ 7.64 s.
The evidence for the logistic and H1 models are comparable, implying
neither is substantially favoured by the data. The physically-motivated
reference model H1 and the logistic model are phenomenological; we
expect the true evolution of the glitch rise to be more complicated, al-
though we know of no robust predictions in the literature. Nevertheless,
the use of these two models shows our derived rise time is relatively in-
sensitive to the details of the mathematical model. Throughout this
work, we quote the more conservative upper-limit rise time of the H1

model.
Within body-averaged models, the glitch rise is described by a di-

mensionless mutual-friction coefficient B, controlled by the underlying
vortex dynamics8, 24–26. Invoking a simplified two-component model,
where the superfluid in the inner crust provides the angular-momentum
reservoir for the glitch, the rise time is an indirect measurement of the
coupling strength between the superfluid and the crust, with moments
of inertia Isf and Icrust, respectively. We derive a lower limit

B & 5.7× 10−6
( τr

12.6 s

)−1
(

fsf
11 Hz

)−1 (
Isf/Itot

0.01

)
, (2)

where fsf is the rotation frequency of the superfluid and Itot = Isf +
Icrust.

3 Glitch overshoot and relaxation
To investigate the overshoot and subsequent relaxation, we in-

clude a second exponential in the frequency evolution. This H2 model
(Tab. 1) is a simplified version of the three-component neutron-star
model from Ref.8, where the star is separated into crustal superfluid,
core superfluid and the non-superfluid crust component. TheH2 model
assumes the three constituents are rigidly rotating and coupled via con-
stant mutual-friction coefficients. While the specific equation chosen to
model the overshoot and decay is motivated by this three-component
model, we treat it as phenomenological for understanding the glitch
dynamics. This phenomenological model could also be interpreted
in terms of alternative physical models that also predict frequency
overshoots5–7.
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Figure 3 | Rotational frequency evolution of the data (black and grey; reproduced
from Fig. 1) and best-fit models. We show the maximum-likelihood fit for the
model that includes a step glitch with an overshoot and subsequent exponential
decay (H2; blue curves), and for a model that includes a slow-down preceding
the glitch (H2+p; red curves). Dashed curves show the raw frequency evolu-
tion. Solid curves shows the time-averaged frequency evolution, which can be
compared directly with the time-averaged data (black).

We fit model H2 to the data, and show the maximum likelihood
alongside the time-windowed data in Fig. 3. We show the raw model
(dashed blue curve) and the time-averaged frequency evolution (solid
blue curve); the latter can be directly compared to the time-windowed
data (black curve).

Comparing the overshoot-decay model H2 and step-glitch model
Hs yields a Bayes factor log10B = 0.38, providing marginal support
for the overshoot model. However, the H1 model (which compared
unfavourably against Hs) is a special case of model H2. The more rel-
evant Bayes factor to understand the importance of the overshoot and
relaxation is between H2 and H1, for which log10B = 2.1 showing
substantial evidence in favour of the overshoot and relaxation. Alter-
natively, we can compare Hs with a modified step-function evolution
including a single decaying exponential. This model, often used in
glitch-timing to model long-term, O(& 1 day), relaxation was also fit
to the data: the Bayes factor, log10B = 2.0, demonstrates strong sup-
port for a relaxation component with τd ∼ 1 min, further confirming
the existence of the overshoot. We remind the reader that a Bayes fac-
tor of log10B > 2 is considered “decisive” support for a model, while
1 ≤ log10B ≤ 2 is considered “strong” support27.

The existence of the overshoot is clear both visually and through
our quantitative analysis. This is not the first identification of an over-
shoot: Refs.3, 4 found a similar feature in the 2000 and 2004 Vela
glitches, the only other pulsar glitches with high-time resolution data.
However, these were not as well resolved as the telescope was less sen-
sitive, requiring 10 s-folding of the pulses to achieve sufficient signal-
to-noise ratio to calculate times of arrival. Comparing with the work
herein, the pulse folding also likely explains the less constrained .30 s
glitch rise time.

The maximum-likelihood overshoot-decay model H2 shown in
Fig. 3 has a decay timescale of τd=65.97+59.38

−24.44 s, magnitude
∆fd=9.36+12.20

−6.38 µHz, and the rise time is similarly constrained as
in the H1 model. The large uncertainty on the decay time is due to
a strong correlation with the size of the overshoot: larger overshoots
with shorter decay times are just as probable as smaller overshoots with
longer decay times. We discuss this in more detail below, including
Fig. 4, which shows the covariance between the size of the overshoot
and the decay timescale using model H2+p.
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Figure 4 | Posterior for overshoot-decay parameters in the H2+p model, cor-
responding to the red curves in Fig. 3. We show the overshoot decay timescale
τd and frequency amplitude of the overshoot ∆fd. The white dashed contour
indicates the one-sigma confidence level.

4 Slow-down preceding the glitch
We investigate the frequency slow-down preceding the glitch by

extending the H2 model to include a step-function in frequency be-
fore the glitch. This phenomenologically models a spin-down event
sometime before the glitch. The frequency evolution for H2+p, the
precursor slow-down model, is given by

fp(t) = f2(t)−∆fpΠ(t; tg−∆t, tg) , (3)

where f2(t) is given by Eq. (1), Π is a rectangle function such that the
frequency decreases by ∆fp for the period ∆t prior to the glitch. Con-
structing the model in this way, ∆f remains the long-term frequency
change at the glitch.

Model H2+p is phenomenological and motivated by the data;
Fig. 1. Furthermore, it is one of many simple phenomenological mod-
els that could be used; e.g., exponential or linear drift models. Rather
than perform a systematic study, we focus solely on H2+p with the
aim to motivate further research in this area. To this end, we specu-
late below about the causes of the slow-down. Until we have a more
physically-grounded model, the significance of the slow-down is diffi-
cult to establish.

The Bayes factor shows the precursor slow-down model H2+p is
the preferred of all models tested here: comparing with the overshoot-
decay H2 model (the next most preferred), log10B = 2.5. This sug-
gests the data supports a slow down of the rotation prior to the glitch,
in addition to an overshoot and decay. In Fig. 3, we show the best-fit
slow-down model in red; the dashed curve represents the raw frequency
evolution, and the solid curve the time-averaged best-fit model.

In Fig. 4, we show the posterior for the size of the overshoot ∆fd
and the overshoot relaxation timescale τd using the H2+p model. As
mentioned, these are inversely correlated, implying a wide range of
equally-likely values for both parameters.

In Fig. 5, we show the posterior of the precursor slow-down
∆fp and the time before the glitch at which this occurs ∆t. Al-
though the size of the slow-down is not well constrained with ∆fp =
5.40+3.39

−2.05 µHz, we note this is a significant fraction of the actual glitch
size ∆f = 16.01+0.05

−0.05 µHz for the H2+p model.
We use a half-normal prior distribution on ∆fp (see Table 2, men-

tary Material), which places the maximum prior probability at zero,
gives reasonable support over values . 10−5 Hz, and exponentially
disfavours larger positive values. If, on the other hand, we use uniform
priors, then another local maxima in the posterior distribution becomes

3
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Figure 5 | Posterior for precursor parameters in theH2+p model, corresponding
to the red curves in Fig. 3. We show the precursor time ∆t and amplitude of the
frequency slow-down ∆fp. The white dashed contour indicates the one-sigma
confidence level.

present at significantly larger ∆fp and at a shorter time preceding the
glitch. We find it difficult to physically motivate a precursor slow-down
many times larger than the glitch size; this explains our choice of the
half-normal prior. However, as all our models are phenomenological,
we leave open the possibility that this larger mode exists, and leave that
for future exploration.

The Vela pulsar has been seen glitching three times with high-time
resolution observations2–4. The first two observations were with a less-
sensitive instrument, implying pulses must be folded to obtain suffi-
cient signal-to-noise. The method detailed herein can be used on those
data, and we encourage reanalysis of that data in search of precursor
slowdowns and overshoot-decays; such features have been hinted at in
Ref.3.

We divide models of the physical nature of the precursor slowdown
into two groups. In the first, the fluctuation seen prior to the glitch in
Fig. 1 is a large incarnation of the stochastic fluctuations seen preced-
ing and following the glitch. In the second group, the slow-down is
unrelated to this stochastic noise.

In future work, we will probe the hypothesis that the stochastic
fluctuations cause the glitch by developing a statistical analysis of the
Vela noise using data away from the glitch. This requires develop-
ment of a spin-down model in the absence of a glitch that takes into
account the stochastic fluctuations, with subsequent analysis of a large
number of off-glitch data segments. Comparing the amplitude of the
frequency slow-down (∼ 5µHz) with the noise distribution, could in-
dicate if the slow-down is a statistical outlier from the typical noise,
potentially allowing falsification of the idea that the spin-down event
caused the glitch.

The cause of the stochastic fluctuations in Fig. 1 are also of interest.
While they could be a manifestation of jitter noise, they may be due to
fluctuations in the rotation rate caused by instabilities, or to extrinsic
effects such as fluctuations in dispersion measure or scattering28. These
ideas can be explored by looking at other sets of high time-resolution
data, using the same method used to produce Fig. 1.

We hypothesise that the slow-down may be due to some intrinsic
mechanism in the star, although this is far from certain. Reference2

reported short-timescale variations in pulse shape during the glitch, in-
cluding a null pulse and unusual pulse shapes before and after the null.
These could indicate the glitch or preceding slow-down are magneto-
spheric in origin, although it is difficult to disentangle cause and effect.
Moreover, the large change in spin period on such short timescales is
difficult to quantitatively explain without catastrophically changing the

magnetic-field topology, which would likely be accompanied with a
long-term change in pulse shape as observed following glitches in high
magnetic-field pulsars and magnetars29–31. Such a long-term change in
pulse shape has not been observed following the 2016 Vela glitch2.

5 Did the spin-down event cause the glitch?
That the glitch is preceded by a spin-down event is intriguing.

Many models6, 8, 32–35 posit that glitches are triggered when sufficient
lag is built up between the superfluid component of the inner crust
and the lattice crust. Some fraction of the fluctuations in Fig. 1 may
be due to intrinsic, stochastic variations of the star’s rotational period.
Those variations may take place on timescales faster than the coupling
timescales of the crust and internal components. If the slow-down event
is one such stochastic variation, albeit a large one, we hypothesise this
may trigger the glitch by spinning down the crust and driving the lag
above its critical value.

Our hypothesis has natural corollaries for glitch statistics of the
pulsar population: if the stochastic variations are large or comparable
to the change in spin period from dipole radiation, glitches will oc-
cur probabilistically when the combination of the spin down and varia-
tions takes the crust-core lag above the trigger threshold. In such cases,
the time period between glitches would neither be regular nor Poisson-
distributed, but would depend on the relative size of the variations with
respect to the spin down. When the variations are large with respect to
the spin down, the glitch recurrence time should be Poisson-distributed.
Finally, if the variations are small compared to changes from magnetic
spin down, the glitch recurrence time should only depend on the spin-
down timescale of the system. Additionally, we expect distinct be-
havior for those stars where glitches are driving the system far from the
critical point and spin down is required to return to the threshold before
variations can initiate a subsequent glitch, versus the objects where this
is not the case and variations can always trigger a glitch.

It is worth noting that, in reality, the critical lag will depend on the
neutron-star density and not have a single value, but there is likely also
a statistical distribution associated with the macroscopically-averaged
value of the critical lag. This should not significantly effect the ar-
guments presented above as they are mainly qualitative. However it
should be taken into account when quantitatively defending this model.

Although there are two populations of pulsars according to their
glitch recurrence statistics36–38, more work is required to establish
whether the two populations correlate with the relative magnitude of
the pulsar’s stochastic variations and their spin-down timescales. Such
a statistically rigorous study would potentially be difficult; it is not clear
which fluctuations are related to intrinsic pulsar spin noise and, e.g.,
pulse-jitter noise. This would also be difficult to generalize to other
pulsars.

6 Conclusion
During the 2016 glitch, the Vela pulsar first spun down. A few

seconds later it rapidly spun up, before finally spinning down with an
exponential relaxation time of ∼ 60 s. This model is substantially
favoured over a simple step glitch, or one with only a single spin-up
event (see Tab. 1).

Testing the rise time alone, we constrain τr ≤ 12.6 s (90% confi-
dence), consistent with the estimated value of Ref.2, and reducing the
previous-best constraint of τr .30 s for the 2004 Vela glitch4. Invok-
ing a two-component neutron-star model, our new constraint translates
into a lower limit for the mutual-friction coupling of B & 5.7× 10−6;
Eq. (2).

We find a frequency overshoot and exponential relaxation with
amplitude ∆fd = 17.77+13.68

−7.99 µHz and decay time scale τd =
53.96+24.02

−14.82 s for the H2+p model, a feature that can be theoretically

4



explained5–8. For example, within the three-component model of Ref.8,
the overshoot only exists if the crust mutual-friction coefficient (cou-
pling the crustal superfluid and crust) exceeds the core friction coeffi-
cient (coupling the core superfluid and crust). Providing a more qual-
itative analysis of the internal physics, e.g., constraining moments of
inertia and coupling coefficients, is difficult at this point as the phe-
nomenological models studied herein do not produce sufficient infor-
mation.

Finally, we find evidence for a slow-down, or possibly a precursor
antiglitch, immediately before the glitch. To the best of our knowledge
this has not been predicted. We hypothesize that it may be a statistical
fluctuation consistent with the overall noise fluctuations and speculate
such fluctuations drive the differential lag between the superfluid and
the crust above its critical value, thus triggering the glitch. This sug-
gests a large number of glitches could be preceded by a slow-down,
providing testable predictions.

Analyses like that presented herein only assess the relative evi-
dence of models. We focus on phenomenological, albeit physically-
motivated models, in a bid to remain model agnostic. Even the best
fitting models tested here do not explain all the features in the data,
e.g., Fig. 3. Future explorations may uncover new descriptions that
explain the data better than the models used herein. For example, fur-
ther theoretical modelling may provide a more nuanced view of how
the slow-down preceding the glitch should manifest; the method we
developed is easily extendable to compare more complex models.

While direct modelling is one avenue of further investigation,
model-agnostic approaches may also yield considerable insight. Fig-
ure 3 is a first step in this direction, although it has the subtlety that
the time window distorts temporal and amplitude features. Another
method could be e.g., shapelet-based models for the frequency evolu-
tion, providing a means to study the underlying frequency evolution
without modelling constraints.
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METHODS
We use the 72-min stretch of data collected by the University of Tasma-

nia Mt Pleasant 26-m radio telescope2 on 2016 December 12. The raw flux
is analysed fitting a standard pulse template to individual pulses and estimat-
ing the site arrival time of each pulse. We use Tempo217, 18 to convert site
arrival times to solar-system barycentre times, and use the Bayesian analysis
package Bilby19 to fit timing models.

The likelihood for the ith pulse with observed arrival time ti is calcu-
lated from

L(ti; θ) =
1√
2πσ2

exp

[
− (ti − h(i; θ))2

2σ2

]
, (4)

where h(i; θ) is the predicted arrival time of the ith pulse (within the con-
text of the model). The variance of this distribution is further given by
σ2 = σ2

i +σ
2
0 , where σ2

i is the estimated variance of the ith arrival time (as
output by the matched-filter profile analysis) and σ0 is an additional stochas-
tic noise to be fit for. The priors used are listed in Table 2.

Prior distribution Units Models
f0 Uniform(11.1854, 11.1874) Hz all
φ0 Uniform(−5, 5) — all
σ0 Uniform(0, 0.01) s all
∆f Log-Uniform(10−8, 10−4) Hz all
tg Uniform(−100, 100) s all
τr Uniform(0, 1000) s H1, H2, H2+p

∆fd Log-Uniform(10−8, 10−4) Hz H2, H2+p

τd Uniform(0, 1000) s H2, H2+p

∆t Uniform(0, 500) s H2+p

∆fp Half-Normal(0, 10−5) Hz H2+p

Table 2 | Table of priors used throughout this work. For the parameters not in-
troduced in the text, φ0 is the phase parameter (number of rotations), we provide
a wider prior to allow the reference pulse to not be zero; and σ is the standard-
deviation of the Gaussian likelihood.

Data availability The data used in this work is available from
Ref.2.

Code availability The bilby19 analysis code is available
from https://git.ligo.org/lscsoft/bilby and particular
scripts for this analysis are available on request from the authors.
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