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James Murray is a true giant in applied mathematics, and especially in

mathematical biology. His career has spanned an enormous range of topics, and
his monumental “Mathematical Biology” is one of the foundational works in the
field. His brilliant career has been influenced heavily by his research, pedagogy,
mentorship, and collegiality. We are delighted at the chance to dedicate this
paper to Jim.

Abstract
A central need in the field of astrobiology is generalized perspectives on life that make
it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key
component of many past and future astrobiological measurements is the elemental
ratio of various samples. Classic work on Earth’s oceans has shown that life displays
a striking regularity in the ratio of elements as originally characterized by Redfield
(Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014). The body
of work since the original observations has connected this ratio with basic ecolog-
ical dynamics and cell physiology, while also documenting the range of elemental
ratios found in a variety of environments. Several key questions remain in considering
how to best apply this knowledge to astrobiological contexts: How can the observed
variation of the elemental ratios be more formally systematized using basic biologi-
cal physiology and ecological or environmental dynamics? How can these elemental
ratios be generalized beyond the life that we have observed on our own planet? Here,
we expand recently developed generalized physiological models (Kempes et al. 2012,

B Christopher P. Kempes
ckempes@santafe.edu

1 The Santa Fe Institute, Santa Fe, NM, USA

2 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA, USA

3 Department of Geosciences, Pennsylvania State University, University Park, PA, USA

4 NASA Goddard Spaceflight Center, Greenbelt, MD, USA

5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

6 Catholic University of America, Washington, DC, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-021-00877-5&domain=pdf


   73 Page 2 of 22 C. P. Kempes

2016, 2017, 2019) to create a simple framework for predicting the variation of ele-
mental ratios found in various environments. We then discuss further generalizing
the physiology for astrobiological applications. Much of our theoretical treatment is
designed for in situ measurements applicable to future planetary missions. We imag-
ine scenarios where threemeasurements can bemade—particle/cell sizes, particle/cell
stoichiometry, and fluid or environmental stoichiometry—and develop our theory in
connection with these often deployed measurements.

Introduction

Since the recognition that life on Earth is characterized by a striking regularity in the
ratio of elements, as originally characterized by Redfield (Redfield 1958; Geider and
La Roche 2002; Eighty years of Redfield 2014), stoichiometric ratios have been a
primary target of astrobiological measurements and theories (Elser 2003; Young et al.
2014). From an astrobiological perspective the natural questions that emerge are how
much variation exists in these ratios across the range of environments and biological
diversity on Earth, how different ratios could have been in time, how different they
could be for non-Terran life, and how they depend on planetary composition (Elser
2003; Young et al. 2014; Anbar 2008; Chopra and Lineweaver 2008; Lineweaver
and Chopra 2012; Neveu et al. 2016; Wang et al. 2018; Geider and La Roche 2002).
On Earth the Redfield ratio is known to vary significantly due to both environmental
and physiological effects that have been considered in ecological and biogeochemical
theories (e.g. Geider and La Roche 2002; Klausmeier et al. 2004a, b, 2008; Loladze
and Elser 2011; Neveu et al. 2016; Sterner et al. 2008; Vrede et al. 2004; Elser et al.
2000; Kerkhoff et al. 2005; Elser et al. 2010; Liefer et al. 2019; Finkel et al. 2016a, b).
For life with a different evolutionary history we need new approaches that are able to
generalize organism physiology and define when the stoichiometric ratios associated
with life are distinct and distinguishable from the environment.

Our general approach here is to first focus on the macromolecules and physiology
shared by all of life on Earth. For the macromolecules we are interested in components
like proteins, nucleic acids, and cellmembranes. For the shared physiologywe consider
processes such as growth rates, nutrient uptake, and nutrient storage, some of which
are derivable from the macromolecular composition of cells. In thinking about the
applicability of these two perspectives to life anywhere in the universe it is important
to note that the specific set of macromolecules might vary significantly while the
general physiological processes might be more conserved. However, our treatment of
the macromolecules is easily generalized if one makes two assumptions: 1) that life
elsewhere shares a set of macromolecules, even if that set is very different from Terran
life, and 2) that those macromolecules fall along systematic scaling relationships.
Throughout this paper we operate within these two assumptions and first address
the observation and implications of (2), before moving on to a general treatment of
physiological scaling which abstracts the underlying details of (1). Throughout we go
back and forth between the patterns observed across single organisms of different size
and the aggregate results for entire ecosystems composed of diverse organisms, which
we characterize by a distribution of cell sizes.
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We first consider how to systematize stoichiometry across the diversity of micro-
bial life using scaling laws based on cell size. We then combine these with abundance
distributions to obtain a simple perspective on the bulk stoichiometry expected for a
population of various cell sizes, and we demonstrate the impact that size distributions
can have on these bulk stoichiometries. We then turn to a simple chemostat model of
biogeochemistry where nutrients flow into an environment and interact with cellular
physiology. Here, we consider the differences in cellular and fluid stoichiometry in
an ecosystem composed first of a single cell size, and then of many cell sizes. This
approach relies on the scaling of bulk physiological characteristics, such as nutrient
quotas, with cell size, and we end by generalizing the exponents of these scaling
relationships and showing the consequences this has on differences between the par-
ticulate and fluid stoichiometry. Throughout we discuss the general signatures of life
that exist at either the cell and ecosystem level.

Deriving Elemental Ratios Across Cell Size

Our interest here is in generalizing organism physiology and connecting it to sto-
ichiometric ratio measurements that could be performed as part of astrobiological
explorations of other planets using current or near-future instrumentation. Stoichiom-
etry could be used as a relatively simple biosignature and, when considered within the
context of the stoichiometry of the environment surrounding the particle/cell, could
serve as a universal or agnostic biosignature. Agnostic biosignatures aim to iden-
tify patterns of living systems that may not necessarily share the same biochemical
machinery as life on Earth. The need for reliable agnostic biosignatures increases as
we examine planets deeper in the Solar System where common heritage with life on
Earth is less likely.

Recently a variety of biological regularities have been discovered for life on Earth
that show that organism physiology can be characterized by systematic trends across
diverse organisms (e.g. Andersen et al. 2016; Brown et al. 2004; West and Brown
2005; Savage et al. 2004). These trends are often power-law relationships between
organism size and a variety of physiological and metabolic features, and are derivable
from a small set of physical and biological constraints (Kempes et al. 2019). Both
physiological features and bulk organism stoichiometries have been previously shown
to follow allometric scaling relationships for diverse organisms ranging from bacteria
to multicellular plants (Elser et al. 1996, 2000; Vrede et al. 2004; Kerkhoff et al.
2005; Elser et al. 2010; DeLong et al. 2010; Kempes et al. 2012; Edwards et al. 2012;
Kempes et al. 2016, 2017; Finkel et al. 2004, 2016a, b; Finkel 2001; Beardall et al.
2009; Tang 1995; West and Brown 2005), and so the allometric perspective taken
here on stoichiometry could be applied to many levels of biological organization
including entire ecosystems (e.g. Elser et al. 2000). Intuitively, these relationships
can be viewed as the optimization of physiological function under fixed constraints
through evolutionary processes (Kempes et al. 2019). As such, in many contexts these
scaling relationships may represent universal relationships connected to fundamental
physical laws such as diffusive constraints. However, in many cases the cross-species
scaling may reflect emergent and interconnected constraints of the physiology itself or
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of evolutionary history and contingency, in which case we might expect these scaling
relationships to vary across life on diverseworlds. For example, changes in the network
architecture of the metabolism with size (Kim et al. 2019) could be governed by the
likelihood of cross-reactivity betweenmolecules, which could depend onwhat types of
molecules are being employed. In general, the possibility of contingent and emergent
constraints is an important consideration for astrobiology.

In microbial life, classic and recent work has systematized macromolecular abun-
dances in terms of key properties of organisms such as overall growth rate or cell size
(e.g. Shuler et al. 1979; Vrede et al. 2004; Loladze and Elser 2011; DeLong et al.
2010; Kempes et al. 2012; Edwards et al. 2012; Kempes et al. 2016, 2017; Savage
et al. 2004; Tang 1995; West and Brown 2005). For example the connection between
cellular growth rate and RNA and protein abundances has long been documented with
various models proposing mechanisms for predicting these trends (Shuler et al. 1979;
Klausmeier et al. 2004b; Vrede et al. 2004; Loladze and Elser 2011; Kempes et al.
2016). Here, we rely on work that has systematized various physiological processes
and interconnections among macromolecular abundance in terms of cell size (e.g.
DeLong et al. 2010; Kempes et al. 2012, 2016; Finkel et al. b; Tang 1995; West and
Brown 2005), where often the interconnection between features can be systematically
derived. For example, models have derived the dependence of growth rate on cell size
from the cross-species scaling of metabolic rate with cell size (Kempes et al. 2012),
and in turn, the ribosomal requirements given this growth rate and the scaling of pro-
tein abundance (Kempes et al. 2016). Not all of these scaling laws are understood from
first principles, but they do provide a way to systematically determine macromolecu-
lar abundances from organism size. For example, bacteria follow a systematic set of
scaling relationships where protein concentrations are decreasing with increasing cell
size and RNA components are increasing in concentration (Kempes et al. 2016).

From the broad set of macromolecular scaling relationships it is possible to derive
the elemental ratio of a cell of a given size simply by considering the abundance and
elemental composition of each component. The elemental ratio of the entire ecosystem
is then found by considering the size distribution of organisms.

We calculate the total elemental abundances for a cell by knowing the elemental
composition of a component, ci (e.g. N/protein), and the total quantity of that com-
ponent, ni (Vc), in a cell of a given size Vc. The total abundance of one element, E
(mol/cell), is equal to the sum across all cellular components

E (Vc) =
∑

i

ci ni (Vc) , (1)

where the components are major categories of macromolecules such as proteins, ribo-
somes, andmRNA. Each of these components has a known scaling with cell size given
in Box 1. As an example, the total nitrogen content in bacteria is given by

E (Vc) = cN ,pn protein + cN ,DN AnDN A + cN ,mRN AnmRN A

+cN ,t RN Ant RN A + cN ,ribonribosomes + cN ,lnl + cN ,ene (2)
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Fig. 1 Elemental ratios as a function of bacterial cell size showing a non-constant stoichiometry that often
differs from the Redfield ratio (e.g. N:P of 16:1 indicated by the dashed line) for many cell sizes. The black
curve is for gram-negative bacteria and gray is for gram-positive bacteria

where cN ,p is the average number of N in protein, cN ,DN A, cN ,mRN A, cN ,t RN A, and
cN ,ribo are the average N in various types of DNA and RNA, cN ,l is the N in lipids,
and cN ,e is the N in energy storage molecules such as ATP and carbohydrates. The
counts of themacromolecules are given by n protein , nribosomes , nDN A,nt RN A, nmRN A,
nl , and ne which represent the numbers of proteins, ribosomes, DNA, tRNA, mRNA,
lipids, and energy storage molecules in the cell, all of which depend on cell size (Box
1). For our analysis here we focus on N:P as an illustrative case, and thus typically
ignore carbohydrates and lipids, which are minor cellular sources of these elements.

Using typical values for the elemental composition of each component Geider and
La Roche (2002), Fig. 1 gives the ratio of elements with overall cell size. This result
shows that the elemental ratios agree with Redfield for some cell sizes but deviate
significantly for most bacterial cell sizes. Both small and large bacterial cells have a
decreased ratio of N to P compared with the Redfield ratio. It should be noted that
the Redfield ratio is known to vary widely, and do so in ways that are ecologically
meaningful from a resource competition perspective (e.g. Geider and La Roche 2002;
Klausmeier et al. 2004b, a, 2008). We discuss these points in greater detail below.

These observations also show that one possible agnostic biosignature is non-
constant elemental ratios across particle sizes. This is the result of evolution optimizing
organism physiology at different scales (Kempes et al. 2019) which will lead to differ-
ent ratios of macromolecules and thus different elemental ratios at each particle size.
This is true even when the set of macromolecules is largely conserved across many
species but the relative ratio of these macromolecules changes due to scaling laws with
cell size, as is the case with ribosomes, DNA, and proteins. The strong and consistent
trend of elemental ratios with cell size should be distinctly different from the patterns
of abiotic particles.

Within this overall framework it is important to consider the assumptions made by
a particular model as differences in these assumptions will give rise to a variety of
scaling relationships for macromolecular abundances with cell size or growth rate. For
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example, considering models of RNA and protein abundance, the set of past models
often focuses on the tradeoffs and interconnected requirements for ribosomes and all
other functional proteins (Shuler et al. 1979; Klausmeier et al. 2004b; Loladze and
Elser 2011; Kempes et al. 2016). Klausmeier et al. consider the tradeoffs associated
with the investment in resource acquisition or biosynthesis out of a fixed abundance
of proteins in a model that couples physiology to the environment (Klausmeier et al.
2004b). Thismodel shows that there is a different optimumfor the number of ribosomes
under exponential growth compared with a population that is at competitive equilib-
rium. Loladze and Elser consider exponential growth and define a reciprocal feedback
between ribosomes and proteins, where RNA drives the rate of protein synthesis,
and protein abundance drives the rate of rRNA production through RNA polymerase
(Loladze and Elser 2011). This reciprocal dynamic leads to the prediction of a single
homeostatic ratio of protein:rRNA, which can be calculated from biochemical param-
eters and where the prediction agrees with the data for several species. Kempes et al.
focus on the requirement that the ribosomes replicate all proteins (including ribosomal
proteins) in the time that the cell divides and takes the cellular growth rate and protein
abundances (both of which systematically scale with cell size) as inputs to predict
the ribosome requirement (Kempes et al. 2016). This result differs from Loladze and
Elser in that it allows for a non-constant protein:rRNA ratio that depends on the distinct
scaling of growth rate and protein abundance, where it is important to note that the
total quantity of RNA polymerase and total quantity of all proteins could each have a
distinct scaling with cell size.

For future work aimed at building general models of cell physiologies for astro-
biology it is important to consider both how differences in assumptions and model
complexity – which could range from the simple coupled dynamics of protein and
RNA production, to whole-cell models which consider much more complicated inter-
connections amongst transport, metabolic, and synthesis processes (e.g. Shuler et al.
1979; Karr et al. 2012) – will lead to different predictions. For our purposes here
it is sufficient to rely on models, or empirical descriptions, that match the known
interspecific scaling in macromolecular abundance.

It should also be noted from a practical perspective that sampling issues may still
exist. For example, it can be hard to separate biotic from abiotic particles in the Earth’s
oceans using known devices (Andersson and Rudehäll 1993). However, the stoichiom-
etry of these particles once sorted are expected to radically differ, which should be
systematically verified. Addressing these issues is an important topic of future work.
In addition, it is important to note that these results are based on the macromolecular
abundances of cells growing at maximum rate under optimal nutrient conditions, and
cells are known to respond to environmental conditions by shifting macromolecular
ratios and elemental abundances (Elrifi and Turpin 1985; Healey 1985; Rhee 1978).
We address these processes of acclimation in our coupled biogeochemical model.
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Box 1 Equations governingmacromolecular content in cells

Many features of the cell have been previously shown to scale with overall cell size Kempes et al.
(2016). The scaling relationships for counts of the main macromolecular components follow

n protein = p0V
βp
c (3)

nDN A = d0V
βd
c (4)

nribo =
l̄ pn protein

(
φ
μ + 1

)

r̄r
μ − l̄r

(
η
μ + 1

) (5)

nt RN A = t0n
βt
r ibo (6)

nmRN A = m0n
βm
ribo (7)

where lr is the average length of a ribosome in base pairs, rr (bp s−1) is the maximum base pair
processing rate of the ribosome which is assumed to be constant across both taxa and cell size,
η (s−1) and φ (s−1) are specific degradation rates for ribosomes and proteins respectively, and
the μ is the growth rate of the cell. Some of these relationships are phenomenological, such as
the scaling of protein content, while others can be derived from simple models. For example, the
number of ribosomes is found using the coupled dynamics of protein and ribosome replication:

dnribo
dt

= γ
rr
lr
nribo − ηnribo (8)

dn protein
dt

= (1 − γ )
rr
l p

nribo − φn protein (9)

where γ is the fraction of ribosomes making ribosomal proteins. These equations can be solved
analytically, where γ can be found by enforcing that both the ribosomal and protein pools double
at the same time, and Equation 4 is given by the lifetime average of this solution. In addition
to the average protein content of the cell, the ribosomal model also requires that we know the
growth rate of an organism, which has also been shown to change with cell size Kempes et al.
(2012) based on the following simple model of energetic partitioning of total metabolism of a

given cell size, B0V
βB
c , into growth and repair:

B0V
βB
c = EV

dVc
dt

+ BV Vc (10)

where BV (Wm−3) is unit maintenance metabolism, Em (J m−3) is the unit cost of biosynthesis,
βB ≈ 1.7 is the scaling exponent of metabolic rate for bacteria, B0 is a metabolic normalization
constant with units W (m3)−βB . This equation can be solved for Vc (t), the temporal growth
trajectory of a cell, from which a time to reproduce can be found, which in turn gives the
population growth rate as

μ = (BV /EV ) (1 − βB ) ln [ε]

ln

[
1−(BV /B0)V

1−βB
c

1−ε1−βB (BV /B0)V
1−βB
c

] . (11)
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This growth rate is found solving for the time to divide, td in the equation Vc (td ) ≡ εV0,
where ε ≈ 2 is the ratio of the cell size at division compared to its initial size, V0, and where
μ = ln (μ) /td . Finally, for the energy storage component of the macromolecular pool we should
focus on ATP and ignore carbohydrates since we are concerned primarily with N:P ratios in
this paper. The previous work cited above does provide scaling relationships or models for ATP,
but Figure 2 gives the dependence of total ATP on cell volume from data for marine bacteria
Hamilton and Holm-Hansen (1967) which is fit well by

na = a0V
βa
c . (12)

It should be noted that some cells are known to have inorganic stores of phosphate and nitrate
(Rhee 1973; Galbraith and Martiny 2015), and our treatment here does not account for such
storage which is not characterized systematically for diverse bacteria.

Deriving Elemental Ratios in Environments From Size Distributions

Our derivations and calculations above focus on measurements of single cells along
with their size, however the most common measurement of stoichiometry, including
the original Redfield measurements (Redfield 1958), is of the bulk properties of all
filtered particles. Thus, it is useful to translate the above cell-level N:P ratios to whole-
environment values. Here, we will consider the value found from aggregating all
particulate matter, later we will address both the aggregate particulate and surrounding
fluid. It is important to note that these considerations of particulate stoichiometry only
account for living cells and that a complete model would need to add the contribution
from abiotic particles and detritus.

Given the strong connection between cell size and elemental ratioswe candetermine
the aggregate elemental ratio within a microbial ecosystem by simply knowing the
cell-size distribution. The total concentration of one element in an environment is

Fig. 2 The number of ATP molecules as a function of cell volume in bacteria. The original data are from
Hamilton and Holm-Hansen (1967) where the original measurement of carbon content of a cell has been
converted to cell volume using the relationship in Løvdal et al. (2008), and ATP mass per cell has been

converted to counts per cell. The data follow na = a0V
βa
c with βa = 1.41 ± 0.22
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given by

Etot =
∫ Vmax

Vmin

E (Vc)N (Vc) dVc (13)

whereN (Vc) (cells/m3 per increment of cell size) is the concentration of individuals
of size Vc in the environment (note that this equation holds for concentrations or
frequencies of individuals), and Vmin and Vmax give the smallest and largest sizes,
respectively.

To compare the elemental ratios we must first specify the frequency of individuals
of different size. The distribution of individual sizes, often referred to as the size-
spectrum, has been previously investigated in detail (e.g. Sheldon and Parsons 1967;
Cavender-Bares et al. 2001; Cuesta et al. 2018; Ward et al. 2012; Taniguchi et al.
2014; Irwin et al. 2006), and is observed to follow a variety of functional forms.
One commonly observed relationship is a negative power law between cell size and
abundance in an environment of the form N (Vc) = CV−α

c , where (Cavender-Bares
et al. 2001) showed that exponents typically vary between α = −0.95 and α = −1.35
using logarithmic binning (see Fig. 3b for an example abundance relationship).

Using a logarithmically-binned discrete version of Eq. 13 with the elemental rela-
tionships E (Vc) from the previous section, and taking N (Vc) = CV−α

c we can
explore the range of elemental ratios as a function of α, where the value of α adjusts
which cell sizes are being more heavily weighted in the integral. More specifically,
α = 0 weights all cell sizes equally, more negative exponents increasingly weight
smaller cells, and more positive exponents increasingly weight larger cells. In Fig.
3a we have plotted the range of elemental ratios as a function of α, where we find
that only certain size distributions would produce values close to the typical Redfield
ratio at the scale of an entire environment. Specifically, for α < 0, we find values
that vary between 5:1 and 15:1 in the N:P ratio. The values most closely match the
Redfield ratio of 16:1 for α = −1.35 which differs slightly from the best fit exponent
of α = −1.07 ± 0.05 (Cavender-Bares et al. 2001) (Fig. 3b). However, it should be
noted that characterizing the distributions of cell sizes as a power law is a simplifi-
cation of more complicated distributions which often have a maximum abundance at
an intermediate size (Sheldon and Parsons 1967; Cavender-Bares et al. 2001). The
maximum abundance can be seen at the far left of Fig. 3b where the peaked function is
well approximated by a piecewise power law with a positive exponent on the left and
negative exponent on the right. If we use the exact empirical function forN (Vc) over
the range of bacterial sizes we calculate an N:P of 12.84 for gram-negative bacteria
and 14.65 for gram-positive bacteria, which closely match the Redfield ratio.

These results show that our procedure generates a priori expectations of whole-
environment stoichiometries from particle-size distributions and known organism
physiology, and could be generalized to any distribution of cell sizes and any sys-
tematic physiology (e.g. presently unknown living systems that use a set of P and
N-containing biomolecules different than Earth’s proteins and nucleic acids). Even
without generalizing physiology the variation in size distribution leads to a variety of
total biomass N:P ratios. No single ratio can be relied on as a distinct biosignature.
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Fig. 3 a Elemental ratios for an entire ecosystem given a cell size distribution characterized by F ∝ V−α
c

where F is frequency and Vc is cell size. The dashed lined is the standard Redfield N:P ratio of 16:1. The
black curve is for gram-negative bacteria and gray is for gram-positive bacteria. For reference, b gives a
measured size spectrum from Cavender-Bares et al. (2001) with a fitted exponent of α = −1.07 ± 0.05.
Here the size bin is defined by i ≤ log10 Vc < i +� with i taken in steps of � = 0.10. The comprehensive
data from Cavender-Bares et al. (2001) show exponents that vary between α = −0.95 and −1.35. In a we
used a discrete logarithmic summation to obtain total N and P concentrations.

Generalized Physiological and Ecological Models of Biogeochemistry

Thus far we have seen that strong trends in N:P with particle size could be an indicator
of life, but that the total stoichiometric ratio of all biomass (filtered particles) does not
have a single reliable value as a biosignature because this depends on the distribution
of cell sizes. This approach also considers the entire set of particulate matter in isola-
tion without considerations of environmental conditions. We need measurements that
assess the “livingness” of a particular sample in the context of its environment, and
one possibility is to simultaneously measure both the particulate and environmental
(fluid) stoichiometries. It is also important to consider that macromolecular and ele-
mental abundances in cells change as cells acclimate to environmental constraints,
where there are known physiological optima based on environmental conditions (Bur-
master 1979; Legović and Cruzado 1997; Klausmeier et al. 2004a, b, 2007, 2008),
and which is the topic of the following chemostat models for microbial life living in
aquatic environments.

A variety of efforts have shown how steady-state elemental ratios can be derived
from physiological models coupled to flow rates in an environment (Legović and
Cruzado 1997; Klausmeier et al. 2004a, b, 2007, 2008). These chemostat models
contain the simplest components of a biogeochemical model: the influx of inorganic
nutrients, consumption and transformation of nutrients into cellular materials as cells
grow, and the loss of both biomass and inorganic nutrients from the system. Such
models are typically written as

dRi

dt
= a

(
Ri,0 − Ri

) − fi (Ri )N (14)

dQi

dt
= fi (Ri ) − μ( �Q)Qi (15)

dN
dt

= μ( �Q)N − mN (16)
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where μ( �Q) is the growth rate as a function of all of the existing elemental quotas
(cellular quantities), and is typically given by

μ( �Q) = μ∞ min

(
1 − Q1,min

Q1
, 1 − Q2,min

Q2
, ..., 1 − Qq,min

Qq

)
(17)

where q is the total number of limiting elements (Legović and Cruzado 1997; Klaus-
meier et al. 2004a, b, 2007, 2008). The function fi (Ri ) is the uptake rate for a given
nutrient. The terms Qi , μ∞, and fi (Ri ) are all known to systematically change with
cell size (see Box 1), where commonly the uptake function is given by

fi = Umax
Ri

Ki + Ri
(18)

given the half-saturation constant Ki and the maximum uptake rate Umax (Burmaster
1979). In this model a is the flow rate of the system, which affects both the inflow of
nutrients from outside the system where Ri,0 is the concentration outside the system,
and the loss of the nutrients from the system. Similarly, m is the mortality rate of
the cells and is often taken to be equal to the flow rate a (Klausmeier et al. 2004a, b,
2007, 2008). In this system one nutrient is typically limiting because of the minimum
taken in Eq. 17, and thus the equilibria of the system are typically dictated by the
exhaustion and limitation of one nutrient. Previous work has shown that growth can
be maximized in this framework by considering the allocation of resources to differ-
ent cellular machinery, and that this leads to two optimum physiologies, one where
maximum growth rate is optimized, and another where all of the resource equilibrium
values are simultaneously minimized leading to resource colimitation and neutral
competitiveness with all other species (Klausmeier et al. 2004a, b).

In this model the steady-state biomass,N ∗, limiting resource, R∗, and quota of the
limiting resource, Q∗, are given by

N ∗ = a (Rin − R∗) (μ∞ − m)

Qminμ∞m
(19)

R∗ = Qminmμ∞K

Umax (μ∞ − m) − Qminμ∞m
(20)

Q∗ = Qmin
μ∞

μ∞ − m
, (21)

(Legović and Cruzado 1997; Klausmeier et al. 2004a, b, 2007, 2008) where, for extant
life, the physiological features are known to depend on size according to

Umax = U0V
ζ
c (22)

K = K0V
β
c (23)

Qmin = Q0V
γ
c (24)

μ∞ = μ0V
η
c . (25)

123



   73 Page 12 of 22 C. P. Kempes

where the empirical values for the exponents and normalization constants are provided
in Box 2. Given these general physiological scaling relationships the steady states are

N ∗ (Vc) = a (Rin − R∗) (μ0V η − m)

mQ0μ0V γ+η
(26)

R∗ (Vc) = mQ0μ0K0V γ+η+β

U0V ζ (μ0V η − m) − mQ0μ0V γ+η
(27)

Q∗ (Vc) = Q0μ0V γ+η

μ0V η − m
(28)

where it is important to note that these equations provide results for a single cell size
considered in isolation. Belowwe first consider how these functions change due to cell
size using known physiological scaling and then general exponents, and thenwe derive
an ecosystem-level perspective from these results and discuss potential biosignatures
under a range of exponent values.

Box 2 Standard scaling relationships for physiological features

A wide variety of organism features are known to depend on overall size for various taxa (e.g.
Andersen et al. 2016; Brown et al. 2004; West and Brown 2005; Savage et al. 2004), including
the key features for biogeochemical considerations (Edwards et al. 2012; Litchman et al. 2007;
Verdy et al. 2009). The physiological features of the coupled model are given by

Nitrogen Phosphorous

Umax = Ut V
ζt
c ζt = 0.67 Ut = 1.04 × 104 Ut = 3.77 × 102

K = Kt V
βt
c βt = 0.27 Kt = 1.23 × 104 Kt = 4.40 × 102

Qmin = Qt V
γt
c γt = 0.77 Qt = 9.85 × 104 Qt = 3.56 × 103

μ∞ = μt V
ηt
c ηt = 0.65 μt = 4.02 × 1012

where the t subscript indicates that these are the known values for extant Terran life. It should
be noted that these values are for eukaryotic organisms compared with the earlier physiological

models for bacteria.

Single-species Biogeochemistry for Extant Life

The above model provides a simple but general biogeochemical systemwhere cellular
physiology is coupled to an environment, and can be deployed to address ecosystems
of various ecological complexity. First we consider the case where an environment
is dominated by a single species, which would correspond to the measurement of a
consistent particle size in our framework. Taking the known physiological scaling
relationships for extant life (Box 2) we find that the size of the organism has a strong
effect on the stoichiometric ratios of both the particles and fluid. Figure 4 gives the
steady state N:P of cells as a function of steady state environmental N:P and cell
size. The variation in the steady-state environmental and cellular N:P was achieved
by varying the inflow concentrations Ri,0.

We find that the largest cells will show the greatest deviation from the environmen-
tal concentration for most environmental ratios. Differences between the fluid and
particle stoichiometry may define a biosignature, and these will be most noticeable
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Fig. 4 a Elemental ratios within cells as a function of the environmental ratio and cell size (dark blue is
the smallest and light yellow is the largest cells), where the ecosystem is composed of only a single cell
size. The dashed line is the one-to-one line. b The differences between cell stoichiometric ratios and the
environment as a function of the nitrogen inflow, Nin , which is also the parameter being varied in a

for environments dominated by the largest cells. It should be noted that these results
depend on the specific scaling relationships of the physiological features given in Box
2, which could greatly vary for life beyond Earth and are even known to vary across
taxa for extant Terran life (DeLong et al. 2010; Kempes et al. 2012).

Generalized ecosystem biogeochemistry

The above coupling of cells to an environment considers a biogeochemical dynamic
with only a single species that is characterized by a given cell size. This is the most
rudimentary possibility for an ecosystem and is generally unlikely, but considering the
full range of possibilities for life in the universe, could be of relevance to particular
astrobiological contexts such as environments with low energy flux and characterized
by a single resource limitation. However, we would like to expand this perspective to
more complicated ecosystems with greater diversity as represented by a variety of cell
sizes.

Classic resource competition theory in equilibrium (e.g. Tilman 1982; Levin 1970;
Hutchinson 1953, 1957; Volterra 1927, 1931) indicates that for multiple species, in
our case multiple cell sizes, to coexist on a single limiting resource they must all
share the same R∗ value. This is not naturally the case given the physiological scaling
relationships outlined above, or the unlikelihood that many species will have identical
physiological parameter values. In general, at most x number of species can coexist
in equilibrium if there are x independent limiting factors (Levin 1970), and in our
framework we can adjust the mortality rate,m, to abstractly represent the combination
ofmany factors and to obtain coexistence. This adjustment could be the consequence of
a variety of other factors such as variable predation, sinking rates, phage susceptibility,
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or intrinsic death. For our purposes this approach allows us to obtain a spectrum of
cell sizes in connection with our earlier focus.

To enforce coexistance we take R∗ (Vc) = Rc, where Rc is a constant, in which
case the required mortality rate is given by

m = RcUmaxμ∞
RcUmax + Qminμ∞ (K + Rc)

(29)

= RcU0μ0v
ζ+η

RcU0vζ + Q0μ0vγ+η
(
Rc + K0vβ

) . (30)

This function form should be seen as the consequence of the complicated evolutionary
dynamics ofmany species living in a coupled ecosystemwhere prey and predator traits
have evolved over time and new effective niches have emerged. It should also be noted
m is now size dependent compared with being set to constant value which was the
case for the earlier results.

Our mortality relationship can be incorporated into N ∗ to give the scaling of
biomass concentration for each cell size:

N ∗ (Vc) = a (Rin − Rc) V
−ζ
c

(
Rc + K0v

β
)

RcU0
. (31)

This result has two important limits, where either the half-saturation constant is much
smaller than the equilibrium value of nutrient in the environment, K0v

β 	 Rc, or is
much bigger than this environmental concentration, which leads to

N ∗ (v) =
{

∝ V−ζ
c K0V

β
c 	 Rc

∝ V β−ζ
c K0V

β
c 
 Rc

(32)

These two relationships provide nice bounds on the scaling ofN given the underlying
physiological dependencies.

Similarly, the quota is given by

Q∗ = Q0V
γ
c + Rcv

ζ−ηU0

μ0
(
Rc + K0vβ

) . (33)

which implies that the ratio of particle to fluid elemental abundance for the limiting
nutrient is the following function of cell size

N ∗Q∗

R∗ =

⎧
⎪⎪⎨

⎪⎪⎩

a(Rin−Rc)

(
Q0V

γ−ζ
c +U0V

−η
c

μ0

)

RcU0
K0V

β
c 	 Rc

a(Rin−Rc)
(
K0Q0μ0V

β+γ−ζ
c +RcU0V

−η
c

)

R2
cU0μ0

K0V
β
c 
 Rc

(34)

This relationship is similar to the types of results shown in Fig. 4, but gives the ratio
between cell and environment concentrations for a single element of interest (rather
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than as comparisons of ratios of elements), and importantly, does so under the con-
straints of coexistence. This result leads to particular biosignature possibilities when
measuring only a single element, and does so for the more realistic ecosystem condi-
tions of coexistence. If we measure the particle size distribution in an environment,
then this is enough to specify the value of α = −ζ or α = β − ζ from Eq. 34,
leaving us with γ and η to determine the element ratio scaling between cells and the
environment as a function of particle size.

From a biosignatures perspective, the most ambiguous measurement would be par-
ticles that perfectly mirror the environmental stoichiometry where N∗Q∗/R∗ equals
a constant for all particle sizes. In the first limit, K0V

β
c 	 Rc, this would require

ζ = γ = −α and η = 0. This result would imply that the quota and uptake rates
would need to scale with the same exponent and as the negative value of the size
exponent, both of which are consistent with the observations of Box 2 and Fig. 3b for
extant life. However, this result also requires that there would be no change in growth
rate with cell size, which is very unlikely from a variety of biophysical arguments.

In the second limit, K0V
β
c 
 Rc, a constant value of N∗Q∗/R∗ requires that

ζ − β = γ = −α and η = 0. Again the absence of changes in growth rate connected
with η = 0 is unlikely. In addition, under this scenario the difference in the uptake
and half-saturation scaling, represented by ζ − β, must equal the scaling of the quota
and take the opposite value as the size-spectrum scaling, which is a combination that
is not consistent with extant life and is a very special case in general. Thus, under both
limits N∗Q∗/R∗ is unlikely to have a constant value as a function of cell size, and an
observed scaling in this ratio forms a likely biosignature.

This potential biosignature still requires one to measure the cell-size spectrum in
detail, which may be challenging in certain settings or with certain devices. How-
ever, these relationships can be easily translated into an aggregate ecosystem-level
measurement by averaging over all coexisting cells, where the average is given by

〈N ∗Q∗

R∗

〉
= 1

Vmax − Vmin

∫ Vmax

Vmin

N ∗ (V ) Q∗ (V )

R∗ dV (35)

=
a (Rin − Rc) Vc

(
RcU0V

−η
c

1−η
+ RcQ0μ0V

γ−ζ
c

1+γ−ζ
+ Q0K0μ0V

β+γ−ζ
c

1+β+γ−ζ

)

(Vmax − Vmin) R2
cU0μ0

∣∣∣∣∣∣∣∣

Vc=Vmax

Vc=Vmin

(36)

which, considering the two approximations for N , becomes
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〈N ∗Q∗

R∗

〉
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a(Rin−Rc)Vc

(
U0V

−η

μ0(1−η)
+ Q0V

γ−ζ
c

1+γ−ζ

)

(Vmax−Vmin)RcU0

∣∣∣∣∣∣

Vc=Vmax

Vc=Vmin

K0V
β
c 	 Rc

a(Rin−Rc)Vc

(
RcU0V

−η
c

1−η
+ Q0K0μ0V

β+γ−ζ
c

1+β+γ−ζ

)

(Vmax−Vmin)R2
cU0μ0

∣∣∣∣∣∣

Vc=Vmax

Vc=Vmin

K0V
β
c 
 Rc

(37)

To fully specify this community level ratio for generalized life we need to constrain
the normalizations constants, Q0, k0,U0, andμ0 given any choice of the exponents. A
reasonable way to determine the values of these constants is to match the generalized
rates to the observed Terran rates from Box 2 at a particular reference size, Vr , which
leads to

U0 = UtV
ζt−ζ
r (38)

K0 = KtV
βt−β
r (39)

Q0 = QtV
γt−γ
r (40)

μ0 = μt V
ηt−η
r . (41)

After calibrating the constants to an intermediate cell size of Vr = 10−18 (m3), Fig. 5
gives the community level 〈N ∗Q∗/R∗〉 as a function of the scaling exponents. When
K0v

β 	 Rc the size exponent α specifies −ζ , and when K0v
β 
 Rc then α specifies

β − ζ . In both approximations we plot 〈N ∗Q∗/R∗〉 as a function of η and γ for a
range of α values.

We find that typically 〈N ∗Q∗/R∗〉 differs from 1 for a wide range of α, η and
γ values. This is true under both limits. For fixed values of α the 〈N ∗Q∗/R∗〉 = 1
line is a closed curve as a function of η and γ (Fig. 5). This curve defines the regime
within which it is possible to find 〈N ∗Q∗/R∗〉 = 1 for any value of either η and γ ,
and this region covers a wide range of exponent values. However, the known values
of η and γ for extant life occur fairly far from this curve and would show elemental
concentrations that are distinguishable from the environment. It is likely that the full
range of α, η and γ combinations explored here are precluded for biophysical reasons,
but this requires more detailed work in the future. Finally, it is important to note that
most α, η and γ combinations would yield cell-to-environment ratios that significantly
differ from 1, and that the gradients are very steep around the 〈N ∗Q∗/R∗〉=1 line.
Thus, it is a fairly safe assumption that the elemental abundances of cells should differ
from the environment as this would be the expectation for physiological scaling chosen
at random.

Box 3 Summary of potential biosignatures

1. Systematic shifts in stochiometry with particle size
2. Particle sizes that follow a power law distribution for abundance
3. Systematic shifts in the ratio of particle to fluid elemental abundance as a function of particle

size
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β Rc
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log10
N∗Q∗

R∗

Fig. 5 The ratio of the cellular to environmental nitrogen,
〈N ∗Q∗/R∗〉

, as function of the size spectrum
exponent α, the minimum quota (cellular requirement) scaling exponent, γ , and the growth rate scaling
exponent, η. We have shown the results for the two approximations K0v

β 	 Rc and K0v
β 
 Rc . In each

plot the green line represents
〈N ∗Q∗/R∗〉 = 1, or log10

〈N ∗Q∗/R∗〉 = 0. The orange point represents the
known γ and η exponent values for extant life from Box 2

Discussion

The general framework provided here should make it possible to assess biosignatures
for a wide diversity of potential life (see Box 3 for a summary). We focused on
bacterial life as an example of what we would expect in ecosystems dominated by the
simplest life. However, all of our results could be tuned to other classes of organisms
with the appropriate changes in scaling relationships for macromolecular content and
abundance distributions. Our results do this generally for any life that is governed by a
set of physiological scaling relationships, where, for example, the nutrient quotas are
abstracting the underlying changes in macromolecules and could represent a diverse
set of alternate physiologies and sets of macromolecules for alternate evolutionary
histories or origins of life. Even for extant life on Earth the typical stoichiometry
varies significantly within and across taxa (Geider and La Roche 2002; Klausmeier
et al. 2004b, a, 2008; Loladze and Elser 2011; Neveu et al. 2016; Sterner et al. 2008;
Vrede et al. 2004; Elser et al. 2000; Liefer et al. 2019; Finkel et al. 2016a, b), for
example, plant leaves have an N:P of 30 rather than 16 (Elser et al. 2010; Kerkhoff
et al. 2005). However, the main assumption in our generalized physiological model is
that life will fall along allometric scaling relationships, which occurs for multiple taxa
on Earth and has good justification from various arguments connected with universal
physical constraints.
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It should also be noted that many of the physiological scaling relationships have
strong physical principles motivating the exponents and the wide variation taken in
the generalized equations may not be realizable by life anywhere in the universe. Thus
observed biosignatures may be much more similar to our analyses in Figs. 1, 3, and 4
than the possibilities encapsulated in our generalized physiological model as capture
in Figure 5.

In addition, our efforts here have often focused on the assumption of one limiting
nutrient. However, this scenario of a single resource typically does not lead to coexis-
tence (e.g. Tilman 1982; Levin 1970; Hutchinson 1953, 1957; Volterra 1927, 1931).
The problem of coexistence can be solved by many additional considerations such
as environmental stochasticity, the addition of spatial dynamics, or species adapta-
tion (e.g. Hutchinson 1953; Levins and Culver 1971; Klausmeier and Tilman 2002;
Kremer and Klausmeier 2013), all of which could be important for future modeling
efforts or for measurements of the spatial variation in stoichometry. However, our
solution for mortality allows for coexistence in a single environment and our model
is compatible with measurements made at a single or coarse-grained location which
may be typical of many future astrobiological measurements. Our general physio-
logical perspective should be combined with more advanced biogeochemical models
that consider many nutrients, including trace elements, and more complex ecologi-
cal and evolutionary dynamics — many of which can be connected systematically
with size (Andersen et al. 2016; Kempes et al. 2019) — to fully explore the range of
particle size distributions, and the particle to fluid stoichiometric differences that can
be reasonably expected to represent biosignatures. Finally, since our approach only
considers the living component of particulate matter future models should incorporate
the stoichiometric contributions of abiotic particles and detritus along with more com-
plex geochemistry and ask how much this addition can shift the general biosignatures
presented here.
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Appendix: Macromolecular Constants for Stoichiometry

One of our overall goals is to assess the size-dependence of elemental ratios. To do this
we relied on average elemental abundances of various macromolecules coupled with
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the number scaling of those macromolecules with cell size. Here, we provide more
details on the conversion of macromolecular quantities and some novel quantification
of the scaling of macromolecular abundance. For all of the elemental abundances of
N and P in particular macromolecules we rely on Geider and La Roche (2002) unless
otherwise indicated. Most of the scaling relationships follow from Box 1 converted
into molecule numbers. It should be noted that several additional features could shift
the following calculations, such as gram-positive vs. gram-negative architectures, or
the observation of scaling relationships between the total membrane-bound proteins
and cell size. We have included a gram-negative and gram-positive comparison in Fig.
1 to provide a sense of the range of values that these variations can cause.

Amino Acids We used the scaling of total protein mass for bacteria (Kempes et al.
2016) combined with the average mass of an individual amino acid, 1.79 × 10−22 g
(Bremer et al. 1996), to obtain the total number of amino acids in the cell.

Nucleotides We used the total ribosome number count from Kempes et al. (2016)
combined with the number of RNA nucleotides in a ribosome, 4566 (Bremer et al.
1996), to obtain the total number of RNA molecules contributed from ribosomes.
For the mRNA we used the number of mRNA per ribosome, 1.08 (mRNA/ribosome)
(Kempes et al. 2016), the average length an mRNA, 975 nucleotides (see Kempes
et al. 2016 for a review), and the number of ribosomes to estimate the total abundance.
Similarly, for the tRNA we used the tRNA per ribosome of 9.3 (Bremer et al. 1996),
and the average length of a tRNA, 80 nucleotides (Bremer et al. 1996). For DNA we
used the base pair count from Kempes et al. (2016).

Phospholipids and Peptidoglycan For the phospholipids we consider that p = 0.30
of outer membrane is composed of proteins (Szalontai et al. 2000). For the remaining
surface area we consider that a single phospholipid occupies s = 55 × 10−20 m2

(Nichols and Deamer 1980) of surface area, such that for a gram-negative bacterium
the total number of phospholipids is given by 8π(1 − p)

(
r2c + (rc − δ)2

)
/s, where

rc is the radius of the cell and δ = 3.43 × 10−8 m is the distance between the plasma
and outer membranes (Meroueh et al. 2006). For a gram positive bacterium the total
number of phospholipids can be approximated by 4π(1 − p)

(
rc − tp

)2
/s, where

tp = 6.4× 10−9 m is the thickness of the peptidoglycan layer (Meroueh et al. 2006).
For the peptidoglycan layer we take the basic monomer of NAG-NAM and asso-

ciated peptides from Meroueh et al. (2006), which contains 8 N and no P and is
arranged into a unit volume defined by 6 strands each of which is 8 monomers
long such that the unit volume contains 384 N. This unit volume is an approxi-
mate cylinder with a diameter of ≈ 7 × 10−9 m and a height of ≈ 1 × 10−8 m
(Meroueh et al. 2006). The total volume of peptidoglycan in the cell is then given
by 4/3π

(
(rc − t0 − tperi )3 − (rc − to − tperi − tp)3

)
for a gram-negative bacterium,

where to = 6.9×10−9 m is the thickness of the outermembrane and tperi = 2.1×10−8

m is the thickness of the periplasm (Meroueh et al. 2006). For a gram-positive bac-
terium the total peptidoglycan volume is approximately 4/3π

(
r3c − (rc − tp)3

)
. Both

volumes allow us to count the number of unit volumes and associated elemental abun-
dances.

ATP For the ATP we use the scaling from Fig. 2.
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Legović T, Cruzado A (1997) A model of phytoplankton growth on multiple nutrients based on the
Michaelis–Menten–Monod uptake, Droop’s growth and Liebig’s law. Ecol Model 99(1):19–31

LevinSA (1970)Community equilibria and stability, and an extension of the competitive exclusion principle.
Am Nat 104(939):413–423

Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proceed
Nat Acad Sci 68(6):1246–1248

Liefer JD, Garg A, Fyfe MH, Irwin AJ, Benner I, Brown CM, Follows MJ, Omta AW, Finkel ZV (2019)
The macromolecular basis of phytoplankton C:N: P under nitrogen starvation. Front Microbiol 10:763

Lineweaver CH, ChopraA (2012)What Can Life on Earth Tell UsAbout Life in theUniverse?. In: Seckbach
J (ed)Genesis–InTheBeginning. Precursors of Life, ChemicalModels andEarlyBiological Evolution,
pp: 799–815. Springer, Dordrecht

Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-
offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett
10(12):1170–1181

Loladze I, Elser JJ (2011) The origins of the Redfield nitrogen–to–phosphorus ratio are in a homoeostatic
protein–to–rRNA ratio. Ecol Lett 14(3):244–250

Lφvdal T, Skjoldal E, Heldal M, Norland S, Thingstad T (2008) Changes in morphology and elemental
composition of Vibrio splendidus along a gradient from carbon-limited o phosphate-limited growth.
Microb Ecol 55(1):152–161

McKay CP (2008) An approach to searching for life on Mars, Europa, and Enceladus. In: Botta O, Bada J,
Gómez Elvira J, Javaux E, Selsis F, Summons R (eds) Strategies of Life Detection, pp. 49–54. Springer
Science & Business

MerouehSO,BenczeKZ,HesekD,LeeM, Fisher JF, Stemmler TL,Mobashery S (2006) Three-dimensional
structure of the bacterial cell wall peptidoglycan. Proceed Nat Acad Sci 103(12):4404–4409

Neveu M, Poret-Peterson A, Anbar A, Elser J (2016) Ordinary stoichiometry of extraordinary microorgan-
isms. Geobiology 14(1):33–53

123



   73 Page 22 of 22 C. P. Kempes

Nichols JW,DeamerDW (1980)Net proton-hydroxyl permeability of large unilamellar liposomesmeasured
by an acid-base titration technique. Proceed Nat Acad Sci 77(4):2038–2042

Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):205–221
Rhee G–Y (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in

Scenedesmus sp. J Phycol 9(4):495–506
Rhee G–Y (1978) Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and

nitrate uptake. Limnol Oceanograp 23(1):10–25
Savage V, Gillooly J, Woodruff W, West G, Allen A, Enquist B, Brown J (2004) The predominance of

quarter-power scaling in biology. Func Ecol 18:257–282
SavageV,Gillooly J, Brown J,West G, Charnov E (2004) Effects of body size and temperature on population

growth. Am Nat 163(3):429–441
Sheldon R, Parsons T (1967) A continuous size spectrum for particulate matter in the sea. J Fisheries Board

Canada 24(5):909–915
Shuler M, Leung S, Dick C (1979) A mathematical model for the growth of a single bacterial cell. Ann

New York Acad Sci 326(1):35–52
Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J (2008) Scale-dependent

carbon: nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr
53(3):1169–1180

Szalontai B, Nishiyama Y, Gombos Z, Murata N (2000) Membrane dynamics as seen by Fourier trans-
form infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803: the effects of lipid
unsaturation and the protein–to–lipid ratio. Biochim Biophys Acta Biomembr BBA-Biomembranes
1509(1–2):409–419

Tang EP (1995) The allometry of algal growth rates. J Plankton Res 17(6):1325–1335
Taniguchi DA, Franks PJ, Poulin FJ (2014) Planktonic biomass size spectra: an emergent property of

size-dependent physiological rates, food web dynamics, and nutrient regimes. Mar Ecol Progr Series
514:13–33

Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton,
USA

Verdy A, Follows M, Flierl G (2009) Optimal phytoplankton cell size in an allometric model. Mar Ecol
Progr Series 379:1–12

Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria
della Reale Accademia Nazionale dei Lincei 2: 31–113

Volterra V (1931) Leçons sur la Théorie Mathématique de la Lutte pour la Vie, Gauthier–Villars, Paris
Vrede T, Dobberfuhl DR, Kooijman S, Elser JJ (2004) Fundamental connections among organism C:N: P

stoichiometry, macromolecular composition, and growth. Ecology 85(5):1217–1229
Wang HS, Lineweaver CH, Ireland TR (2018) The elemental abundances (with uncertainties) of the most

Earth–like planet. Icarus 299:460–474
Ward BA, Dutkiewicz S, JahnO, FollowsMJ (2012) A size-structured food-webmodel for the global ocean.

Limnol Oceanograp 57(6):1877–1891
West G, Brown J (2005) The origin of allometric scaling laws in biology from genomes to ecosystems:

towards a quantitative unifying theoryof biological structure andorganization. JExpBiol 208(9):1575–
1592

Young PA, Desch SJ, Anbar AD, Barnes R, Hinkel NR, Kopparapu R, Madhusudhan N, Monga N, Pagano
MD, Riner MA et al (2014) Astrobiological stoichiometry. Astrobiology 14(7):603–626

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications
	Abstract
	Introduction
	Deriving Elemental Ratios Across Cell Size
	Box 1 Equations governing macromolecular content in cells
	Deriving Elemental Ratios in Environments From Size Distributions
	Generalized Physiological and Ecological Models of Biogeochemistry
	Box 2 Standard scaling relationships for physiological features
	Single-species Biogeochemistry for Extant Life
	Generalized ecosystem biogeochemistry

	Box 3 Summary of potential biosignatures
	Discussion
	Acknowledgements
	Appendix: Macromolecular Constants for Stoichiometry
	References




