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We establish that massive complex Abelian vector fields (mass μ) can form gravitating solitons, when 
minimally coupled to Einstein’s gravity. Such Proca stars (PSs) have a stationary, everywhere regular 
and asymptotically flat geometry. The Proca field, however, possesses a harmonic time dependence 
(frequency w), realizing Wheeler’s concept of geons for an Abelian spin 1 field. We obtain PSs with 
both a spherically symmetric (static) and an axially symmetric (stationary) line element. The latter 
form a countable number of families labelled by an integer m ∈ Z

+. PSs, like (scalar) boson stars, 
carry a conserved Noether charge, and are akin to the latter in many ways. In particular, both types 
of stars exist for a limited range of frequencies and there is a maximal ADM mass, Mmax, attained 
for an intermediate frequency. For spherically symmetric PSs (rotating PSs with m = 1, 2, 3), Mmax �
1.058M2

Pl/μ (Mmax � 1.568, 2.337, 3.247 M2
Pl/μ), slightly larger values than those for (mini-)boson stars. 

We establish perturbative stability for a subset of solutions in the spherical case and anticipate a similar 
conclusion for fundamental modes in the rotating case. The discovery of PSs opens many avenues of 
research, reconsidering five decades of work on (scalar) boson stars, in particular as possible dark matter 
candidates.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Introduction. According to the latest cosmological data [1], ∼ 26%
of the Universe’s energy content is dark matter (DM). The funda-
mental nature of DM, however, is unknown. A widespread view-
point is that DM consists of weakly interactive massive particles 
(WIMPs); popular candidates are the lightest supersymmetric par-
ticles, with masses � GeV, such as the neutralino [2]. Despite its 
success in modeling structure formation, some shortcomings of the 
WIMPs DM model arise in small scales, such as the “missing satel-
lite” [3,4] and the “cuspy core” [5] problems. These issues may 
eventually be solved within the WIMP paradigm; but they sug-
gest considering alternative models. Different proposals, some of 
which have been claimed to solve these problems (see [6,7] for re-
views), introduce light or ultra-light bosonic particles/fields, with 
masses � eV, which may form, gravitationally, macroscopic Bose–
Einstein condensates. Even though such proposals have essentially 
a phenomenological character, ultra-light particles (axions) are a 
natural ingredient of the Peccei–Quinn mechanism to solve the 
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strong CP problem [8] and may be motivated at a fundamental 
level by string theoretical constructions - the axiverse [9].

Gravitationally-bound bosonic structures are thus relevant in 
the context of DM searches. The study of (scalar) Bose–Einstein 
condensates as DM candidates is often performed in a Newtonian 
limit. In the fully relativistic regime, such models yield gravitating 
solitons: (scalar) boson stars (SBSs). These objects, initially pro-
posed as a (scalar) realization of Wheeler’s geon idea [10,11], have 
found a variety of applications, from black hole mimickers in as-
trophysics, to particle models in TeV gravity scenarios (see [12,13]
for reviews).

In light of recent proposals advocating massive spin 1 particles 
as a DM ingredient [14–17], the study of the corresponding self-
gravitating structures and their dynamics is of special importance.1

In this letter we show that much like massive spin 0 particles, 
massive spin 1 particles can cluster as everywhere smooth, asymp-
totically flat lumps of energy under their own weight, producing 
gravitating solitons we dub Proca stars (PSs).

1 In some DM literature, axion-like particles and hidden photons are now typi-
cally referred to as weakly interacting slim particles (WISPs) [38].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Einstein-(complex)-Proca theory. We consider one complex Proca 
field, with mass μ (or equivalently, two real Proca fields with 
the same mass). It is described by the potential 1-form A, and 
field strength F = dA. We denote the corresponding complex 
conjugates by an overbar, Ā and F̄ . The minimal Einstein-(com-
plex)-Proca model is described by the action [18,19]:

S =
∫

d4x
√−g

(
R

16πG
− 1

4
Fαβ F̄αβ − 1

2
μ2AαĀα

)
.

The Einstein and Proca field equations are, respectively, Gαβ =
8πGTαβ , ∇αFαβ = μ2Aβ , where the energy–momentum tensor 
reads:

Tαβ = −Fσ (αF̄ σ
β) − 1

4
gαβFστ F̄στ

+ μ2
[
A(αĀβ) − 1

2
gαβAσ Āσ

]
.

The Proca equations imply the Lorentz condition (which is not a 
gauge choice, but a dynamical requirement):

∇αAα = 0 .

The global U (1) invariance of the action, under the transfor-
mation Aμ → eiαAμ , with α constant, implies the existence of a 
conserved 4-current, jα = i

2

[
F̄αβAβ −FαβĀβ

]
. From the Proca 

equation, ∇α jα = 0. Thus a conserved Noether charge exists, Q , 
obtained integrating the temporal component of the 4-current on 
a space-like slice �: Q = ∫

�
d3x

√−g jt .

Spherically symmetric PSs. We first consider spherically symmet-
ric solutions, taking the following line element form

ds2 = −σ 2(r)N(r)dt2 + dr2

N(r)
+ r2d�2 , (1)

where N(r) ≡ 1 − 2m(r)/r and the Proca potential ansatz

A = e−iwt [ f (r)dt + ig(r)dr] . (2)

σ(r), m(r), f (r), g(r) are all real functions of the radial coordinate 
only and w is a real frequency parameter. As for SBSs the har-
monic time dependence of A is crucial and the complex nature of 
A makes it compatible with the time-independent line element. 
But unlike SBSs there are now two independent radial functions for 
the ‘matter’ field, making the analysis more involved (even more so 
in the rotating case). The Proca equations yield

d

dr

{
r2[ f ′ − wg]

σ

}
= μ2r2 f

σ N
, wg − f ′ = μ2σ 2Ng

w
,

where ′ denotes radial derivative. These two equations imply the 
Lorentz condition constraint (which determines f (r) in terms of 
the remaining functions). The essential Einstein equations read

m′ = 4πGr2
[

( f ′ − wg)2

2σ 2
+ 1

2
μ2

(
g2N + f 2

Nσ 2

)]
,

σ ′

σ
= 4πGrμ2

(
g2 + f 2

N2σ 2

)
.

For the ansatz (1)–(2), the Noether charge reads Q =
4πμ2

w

∫ ∞
0 dr r2 g(r)2σ(r)N(r), and the energy density measured by 

a static observer is

−T t
t = ( f ′ − wg)2

2σ 2
+ 1

2
μ2

(
g2N + f 2

Nσ 2

)
.

Finally, PSs satisfy the virial relation:
∞∫
0

dr r2σ

[
μ2

(
g2 − f 2(4N − 1)

σ 2N2

)
− (wg − f ′)2

σ 2

]
= 0,

is used to test the numerical accuracy of the results. This relation 
can also be used to rule out non-gravitating solutions, i.e. ‘Proca-
balls’ without backreaction.2

Asymptotic behaviours. An analysis of the field equations both 
near the origin and at spatial infinity reveals smooth behaviours. 
Close to r = 0 we find

f (r) = f0 + f0

6

(
μ2 − w2

σ 2
0

)
r2 +O(r4) ,

g(r) = − f0 w

3σ 2
0

r +O(r3) ,

m(r) = 4πG f 2
0 μ2

6σ 2
0

r3 +O(r5) ,

σ (r) = σ0 + 4πG f 2
0 μ2

2σ0
r2 +O(r4) ,

where f0, σ0 are constants, the values of f (r) and σ(r) at the 
origin, respectively. As r → ∞, we find

f (r) = c0
e−r

√
μ2−w2

r
+ . . . ,

g(r) = c0
w√

μ2 − w2

e−r
√

μ2−w2

r
+ . . . ,

m(r) = M + . . . ,

logσ(r) = −4πG
c2

0μ
2

2(μ2 − w2)3/2

e−2r
√

μ2−w2

r
+ . . . ,

where M is the ADM mass and c0 is a constant; observe that 
w < μ, which is a bound state condition.

Numerical results. The solutions that smoothly interpolate be-
tween the two above asymptotic behaviours are found numerically. 
In numerics – and in the following – we set μ = 1, 4πG = 1, by 
using a scaled radial coordinate r → rμ (together with m → mμ, 
w → w/μ) and scaled potentials f → f

√
4πG , g → g

√
4πG . The 

equations are solved by using a standard Runge–Kutta ODE solver 
and implementing a shooting method in terms of the parameter 
f (0).

In Fig. 1 we plot the ADM mass, M , and the Noether charge, 
Q , as a function of the Proca field frequency, w . As w → 1, the 
mass and Noether charge of the solutions vanish, but Q /M → 1. 
Approaching this limit, PSs become spatially diluted with an effec-
tive size much larger than their Schwarzschild radii,3 and trivialize 
at w = 1. Reducing w from this maximal value, PSs become more 
compact; both M and Q follow a spiral, towards a central criti-
cal configuration located around w � 0.891. The maximum of both 
M and Q occurs for wmax � 0.875, with Mmax � 1.058 < Q max �

2 It was recently shown that self-interactions can, however, allow such non-
backreacting ‘Proca-balls’ [39], in analogy with the Minkowski space Q -balls found 
in the scalar case [40].

3 It should be noticed that these gravitational solitons do not possess a surface, 
so various definitions could be taken for the effective radius. For a discussion on 
a possible definition of an effective radius for SBSs see, e.g. [36]. For a definition 
of the effective radius such that it contains 98% of the total mass, Proca stars at 
the minimal stable frequency are around fives times larger than their Schwarzschild 
radius (see also [27]).



R. Brito et al. / Physics Letters B 752 (2016) 291–295 293
Fig. 1. ADM mass M and the Noether charge Q for spherical PSs vs. the Proca field 
frequency w . The inset shows M vs. the shooting parameter f (0), which is analo-
gous to the curve for M vs. the central value of the scalar field for SBSs.

Fig. 2. Energy and Noether charge densities, electric field (Er = |Frt |) and profile 
functions (inset) of a stable PS solution with M = 1.034, w = 0.9, f (0) = 0.061.

1.088. We observe that M < Q from w = 1 down to almost the 
minimal allowed frequency. In the lower part of the spiral M > Q , 
and the binding energy 1 − M/Q (in units μ = 1) is negative,4

corresponding to a region of “energy excess”, where the solutions 
must be unstable against perturbations.

We remark that for the family of solutions exhibited in Fig. 1, 
f (r) has one node5 and g(r) is nodeless. These are the fundamen-
tal solutions. There are also excited solutions, with more nodes 
for these functions, but we did not attempt to study them in any 
systematic way. Studies of SBSs suggest that excited solutions are 
unstable [20]. In Fig. 2 we show the behaviour of physical and 
profile functions for a typical PS solution. In particular observe the 
energy concentration near r = 0.

Stability. A positive binding energy – as that observed along the 
upper branch of Fig. 1 – does not guarantee linear stability. For 
SBSs, a perturbative stability analysis shows that the solutions are 
only stable from the maximal frequency w = 1 down until the fre-
quency at which the maximal mass is attained, wmax . Beyond this 

4 Note that Q represents the number of frees boson particles, and so Q μ is 
the mass of these Q free particles. Comparing Q μ with the gravitational mass M , 
yields the difference in mass/energy between free boson particles and gravitation-
ally bound boson particles. It is then natural that a positive 1 − M/(Q μ) is required 
for stability.

5 The existence of a node is not obvious from the plots; but one can show ana-
lytically that, for any spherical PS, f (r) changes sign at least once. This differs from 
SBSs, for which fundamental modes are nodeless in the (single) profile function.
Fig. 3. Fourier frequency � of the perturbations as function of the PS’s total mass. 
The critical mass at which PSs become unstable corresponds to the star’s maximum 
mass.

point an unstable mode develops [21,22]. An analogous conclusion 
holds for PSs, as we now show by considering their linear radial 
perturbations.

We assume that all perturbations have a harmonic time depen-
dence of the form e−i�t , with � being the characteristic vibrational 
frequencies of the PS. Gauge freedom allows to write the perturbed 
metric as:

ds2 = −σ 2(r)N(r)
[

1 − εh0(r)e−i�t
]

dt2

+ dr2
[
1 + εh1(r)e−i�t

]
N(r)

+ r2d�2 ; (3)

the vector field is perturbed as

A = e−iwt
[(

f (r) + e−i�t ε f1(r) + iε f2(r)

r

)
dt

+
(

ig(r) + e−i�t εg1(r) + iεg2(r)

r

)
dr

]
, (4)

where h0, h1, f1, f2, g1 and g2 are radial perturbations around 
the background solution, and ε is a small, bookkeeping parame-
ter. The perturbed Einstein–Proca system can be reduced to a pair 
of second order ODE’s. Imposing regularity of the perturbations at 
the origin and at infinity, the resulting system is a two dimen-
sional eigenvalue problem for � and one other constant which we 
have chosen to be the value of h0 at the origin. A numerical so-
lution is then obtained by a two dimensional shooting, with the 
result shown in Fig. 3, where we plot �2 versus the PS’s ADM mass 
around the maximal mass. For �2 > 0 the mode is purely real and 
corresponds to stable normal modes. This occurs for w > wmax . 
For �2 < 0 the mode is a purely positive imaginary number, in-
dicating that these configurations are unstable (cf. Eqs. (3) and 
(4)). Thus, in complete agreement with the SBSs case [21–24], we 
can see that the star’s maximum mass corresponds to a transi-
tion point between stable and unstable configurations. For unstable 
configurations with mass 0.1% below the threshold, the instability 
timescale τ is already smaller than τ � 100M . Thus, we expect 
the unstable branch of PS to share similar properties to those ob-
served in the scalar case: configurations which reach this branch 
will either quickly collapse to black holes or migrate back to the 
stable branch via mass ejection (the “gravitational cooling” mech-
anism) [23,25–27].

Rotating PSs. We now turn to rotating PSs. These solutions are 
found with an axi-symmetric metric ansatz
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ds2 = −e2F0(r,θ)dt2 + e2F1(r,θ)(dr2 + r2dθ2)

+ e2F2(r,θ)r2 sin2 θ

(
dϕ − W (r, θ)

r
dt

)2

.

The Proca field ansatz is given in terms of another four func-
tions (Hi, V ) which depend also on r, θ

A =
(

H1

r
dr + H2dθ + iH3 sin θdϕ + iV dt

)
ei(mϕ−wt) , (5)

with m ∈ Z
+ . The Einstein–Proca equations are solved with the 

following boundary conditions, which we have found to be com-
patible with an approximate construction of the solutions on 
the boundary of the domain of integration: ∂r F i

∣∣
r=0 = W

∣∣
r=0 =

Hi |r=0 = V |r=0 = 0; also Fi
∣∣
r=∞ = W

∣∣
r=∞ = Hi |r=∞ = V |r=∞ =

0; and ∂θ Fi
∣∣
θ=0,π

= ∂θ W
∣∣
θ=0,π

= Hi |θ=0,π = V |θ=0,π = 0 (note 
that for m = 1 the conditions for H2, H3 are different, with 
∂θ H2

∣∣
θ=0,π

= ∂θ H3
∣∣
θ=0,π

= 0). All rotating PSs we have con-
structed so far are symmetric w.r.t. a reflection along the equato-
rial plane. Odd-parity composite configurations, however, are also 
likely to exist.

As usual, the ADM mass M and angular momentum J are 
read off from the asymptotic expansion, gtt = −1 + 2GM/r + . . . , 
gϕt = −2G J sin2 θ/r + . . . . In analogy with the SBSs case [28,29], 
one can show that the angular momentum is a multiple of the 
Noether charge, J = mQ , but in contrast to the SBSs case, the an-
gular momentum density T t

ϕ and the Noether charge density jt are 
not proportional any longer. Regularity of the Proca stars imposes 
that the number m is an integer. As a result, there is a countable 
number of 1-parameter continuous families of axisymmetric solu-
tions in terms of m (with m = 0 the spherically symmetric limit). 
However, for each integer azimuthal harmonic index, m, there is a 
continuous set of solutions in terms of w .

The Einstein–Proca equations for this rotating case are quite 
involved and shall not be presented here. They are solved nu-
merically, subject to the above boundary conditions, by using the 
elliptic PDE solver FIDISOL [30] based on the Newton–Raphson 
procedure.6 In Fig. 4 we exhibit the mass vs. angular momentum, 
together with the mass and the Noether charge vs. the Proca field 
frequency, for rotating PSs with m = 1, 2, 3 (inset). One can see 
that M and J are always positively correlated.7 The physical quan-
tities for the largest mass PSs are exhibited in the following table, 
for m = 0 (spherical) and m = 1, 2, 3 (rotating), where they are 
compared with the results in the literature for the corresponding 
largest mass SBSs (last column); one observes that Mmax is always 
smaller for the latter.

wmax Mmax Q max Jmax Mmax SBSs

m = 0 0.875 1.058 1.088 0 0.633 [10]
m = 1 0.839 1.568 1.626 1.626 1.315 [29,31]
m = 2 0.767 2.337 2.461 4.921 2.216 [31]
m = 3 0.667 3.247 3.489 10.467 not reported

Some physical properties of the rotating PSs mimic those of 
SBS: for example, the rotating PSs solutions spatially delocalize as 
w → 1 (similarly to the static case) and trivialize in that limit; 
also, for m = 1, neither the energy density nor the Noether charge 
density vanish on the symmetry axis. Novel features, however, also 

6 We use a scaling similar to that described in the spherical case. We estimate 
the typical error of the solutions to be smaller than 1 part in 104. In the spherical 
case much higher accuracies are obtained; e.g., the virial identity is typically obeyed 
to 1 part in 1012.

7 With increasing m it becomes increasingly difficult, numerically, to move further 
along the spiral.
Fig. 4. M vs. J diagram for rotating PSs with m = 1, 2, 3. The inset shows M (solid 
red lines) and Q (dashed green lines) vs. w , where m = 0 corresponds to the spher-
ical PSs in Fig. 1.

appear. As an example, the distribution of the energy–momentum 
tensor (and Noether charge) is more intricate than the “mass 
torus” found for rotating SBSs [28] and exhibits a composite struc-
ture with more than one torus; moreover, the existence of field 
lines leads to new (qualitative) features. These aspects will be dis-
cussed in detail elsewhere.

We have not attempted to study in detail the stability of ro-
tating PSs. For rotating SBSs, catastrophe theory arguments [32]
support a similar conclusion to that obtained in the static case: 
the solutions are stable from the maximal frequency down to the 
point where the maximal mass is attained. We expect a similar 
conclusion to hold for rotating PSs. In the rotating case there can 
also occur ergoregion instabilities [33]; for SBSs ergoregions only 
appear in the unstable branch of solutions and an analogous situ-
ation is true for PSs.8

Discussion and outlook. The discovery of PSs suggests various 
novel directions of research, besides the detailed analysis of the 
solutions presented herein; let us mention two. 1) In the scalar 
case, a single (rather than complex) real field allows the existence 
of very long lived quasi-solitons – oscillatons; the same is true for 
the Proca case [27]. 2) Can one add a black hole inside a PS, like for 
other gravitating solitons? While for spherically symmetric config-
urations one can show the absence of black hole solutions, this is 
possible inside a spinning PS, again in complete analogy with the 
SBS case [34–36]. These solutions circumvent standard no-hair the-
orems (e.g. [37]) since a Proca field of the form (5), does not share 
the isometries of a stationary and axi-symmetric spacetime.

A final remark relating PSs with DM phenomenology. Since 
ordinary matter, which constitutes only ∼ 5% of the Universe’s 
energy content, is comprised of over ten elementary particles, it 
is reasonable to admit that DM is composed of different kinds 
of fundamental entities, but which, when gravitationally clustered 
into macroscopic lumps, display some universality. If Bose–Einstein 
condensates of ultra-light scalar fields are viable DM models, the 
existence of PSs akin to SBSs suggests the former may be another 
DM component.
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