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ABSTRACT

The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already

firmly established. This empirical classification is generally linked to the physical classification of GRBs originating

from compact binary mergers and GRBs originating from massive star collapses, or Type I and II GRBs, with the

majority of short GRBs belonging to Type I and the majority of long GRBs belonging to Type II. However, there is a

significant overlap in the duration distributions of long and short GRBs. Furthermore, some intermingled GRBs, i.e.,

short-duration Type II and long-duration Type I GRBs, have been reported. A multi-wavelength, multi-parameter

classification scheme of GRBs is evidently needed. In this paper, we seek to build such a classification scheme with

supervised machine learning methods, chiefly XGBoost. We utilize the GRB Big Table and Greiner’s GRB catalog

and divide the input features into three subgroups: prompt emission, afterglow, and host galaxy. We find that the

prompt emission subgroup performs the best in distinguishing between Type I and II GRBs. We also find the most

important distinguishing feature in prompt emission to be T90, hardness ratio, and fluence. After building the machine

learning model, we apply it to the currently unclassified GRBs to predict their probabilities of being either GRB

class, and we assign the most probable class of each GRB to be its possible physical class.

Key words: (transients:) gamma-ray bursts – methods: data analysis

1 INTRODUCTION

Dating from the early days of Gamma-ray burst (GRB)
study, a clear bimodal distribution had been identified in
their durations (Kouveliotou et al. 1993). Two classes of
GRBs are then proposed based on their durations, namely
long GRBs (LGRBs) and short GRBs (SGRBs). The com-
monly used criterion is based on T90, the time within which
90% of the fluence of the GRB is observed, with the dividing
point set to be T90 = 2 s.

LGRBs are thought to be produced by the core-collapse
of massive stars (Woosley 1993), and this theory was sub-
sequently supported by direct observational evidence of
the association of some LGRBs with Type Ic supernovae
(Galama et al. 1998; Woosley & Bloom 2006). SGRBs are
thought to be originated from compact star mergers (Eichler
et al. 1989), and this theory was supported by the multi-
messenger observations of the binary neutron star merger
event GW170817/GRB 170817A (Abbott et al. 2017a,b,c;
Goldstein et al. 2017; Zhang et al. 2018).

? luoj7@unlv.nevada.edu

However, this dichotomy is far from perfect. Significant
overlap presents in the duration distributions of long and
short GRBs, and the duration itself is dependent on the en-
ergy band in which it is measured (Mukherjee et al. 1998;
Hakkila et al. 2003; Horváth et al. 2006; Zhang & Choi 2008;
Veres et al. 2010; Qin et al. 2012; Bromberg et al. 2013;
Zhang et al. 2016). Moreover, there are some short-duration
GRBs thought to be possibly produced by core-collapse mas-
sive stars (Greiner et al. 2009; Tanvir et al. 2009; Salvaterra
et al. 2009; Antonelli et al. 2009; Zhang et al. 2009; Guelbenzu
et al. 2011; Zhang et al. 2020, 2021; Ahumada et al. 2021),
as well as some long-duration GRBs thought to be possibly
originated from compact star mergers (Gal-Yam et al. 2006;
Gehrels et al. 2006; Fynbo et al. 2006; Della Valle et al. 2006;
Zhang et al. 2007; Yang et al. 2022a; Troja et al. 2022; Zhang
et al. 2022a).

The existence of these “intermingled” GRBs challenges the
practice of classifying GRBs solely based on duration, as well
as the names of “long” and “short” GRBs. It is then apparent
that more sophisticated classification criteria involving mul-
tiple observational parameters are needed. Throughout this
study, we refer to the GRB classes based on their physical
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origins, namely Type I for compact merger GRBs, and Type
II for collapsar GRBs, following the classification scheme of
Zhang (2006); Zhang et al. (2009). Many other schemes for
GRB classification have also been put forward (e.g. Zhang
et al. 2009; Lü et al. 2010; Zhang et al. 2012; Bromberg et al.
2013; Lü et al. 2014; Yang et al. 2016; Li et al. 2016; Kulka-
rni & Desai 2017; Li et al. 2020; Minaev & Pozanenko 2020),
yet the classification of long and short GRBs is still largely
based on community consensus, and there is a lack of objec-
tive classification models with minimal human interference.

In this case, machine learning comes in handy. Capable of
automatically generating results without human input after
training, machine learning can help us to fathom the dif-
ferences between Type I and II GRBs, as well as aid us in
the classification of newly discovered GRBs. Machine learn-
ing have already been widely adopted in the study of GRBs
(e.g. Horváth et al. 2006; Ř́ıpa et al. 2012; Tarnopolski 2015;
Modak et al. 2018; Horváth et al. 2019; Jespersen et al.
2020; Salmon et al. 2022a; Modak 2021; Salmon et al. 2022b;
Tarnopolski 2022; Bhave et al. 2022). However, the above-
mentioned studies predominantly use machine learning meth-
ods of the unsupervised type, where only the observed fea-
tures of the GRBs are inputted into the models, but not the
labels (the GRBs’ physical classes being Type I or II). On
the other hand, the other type of machine learning methods,
supervised methods, are also commonly employed by astron-
omy researchers in the classification of other astronomical
objects (e.g. Connor & van Leeuwen 2018; Villa-Ortega et al.
2022; Butter et al. 2022; de Beurs et al. 2022; Yang et al.
2022b; Coronado-Blázquez 2022; Kaur et al. 2022; Fan et al.
2022; Luo et al. 2022b; Zhu-Ge et al. 2022), study on the
application of supervised methods on GRB is scarce. Since
supervised methods take both features and labels as input,
and can produce deterministic predictions of the class of new
GRBs, they can be helpful in identifying the true physical
origin of intermingled GRBs.

In this study, we apply supervised machine learning meth-
ods to the classification of Type I and II GRBs. In Section
2, we introduce the GRB catalogs we utilize and the ma-
chine learning methods we use. In Section 3, we present the
classification results and feature importance from the ma-
chine learning models. In Section 4, we attempt to predict
the classes of the unclassified GRBs. Finally, in Section 5, we
put forward our conclusions.

2 DATA AND METHODS

We use an updated version of the GRB Big Table (Wang et al.
(2020), Wang et al. (in prep)), which contains 7179 GRBs
ranging from 1991 April 21 – 2021 July 08. Greiner’s GRB
catalog (https://www.mpe.mpg.de/~jcg/grbgen.html), on
the other hand, has 2261 GRBs in the same time range. We
match the two catalogs, requiring T90 of the selected GRBs
in the Big Table to be known, and we label the GRBs based
on their labels in Greiner’s catalog. GRBs with ‘S’ at the end
of their names are marked as Type I GRBs, while the others
are marked as Type II GRBs. We also adopt the consen-
sus classification of some intermingled GRBs: Type II GRB
090426 (Antonelli et al. 2009; Guelbenzu et al. 2011), Type
I GRB 060505 (Fynbo et al. 2006) and Type I GRB 060614
(Fynbo et al. 2006; Gal-Yam et al. 2006; Gehrels et al. 2006;

Zhang et al. 2007). This leaves us with 144 Type I and 1761
Type II GRBs. We acknowledge that this matching method
substantially reduces the size of our sample, but the un-
matched GRBs do not have many known features, to begin
with. Therefore, we did not discard too much information.

In this study, we pay special interest to the intermingled
GRBs. We define intermingled GRBs as GRBs classified as
Type I in Greiner’s catalog, but have T90 values > 2 s in the
Big Table, or GRBs classified as Type II in Greiner’s catalog,
but have T90 < 2 s. There are 21 intermingled Type I GRBs
and 59 intermingled Type II GRBs in our sample.

We then divide the features in the Big Tables into three
subgroups: prompt emission, afterglow and host galaxy.
Three subsamples are subsequently created by requiring each
GRB in the subsamples to have at least one feature other than
T90 in the corresponding feature group to be known. We also
divide each subsample into training sets and test sets with a
7:3 ratio, while keeping the ratio of Type I to Type II GRBs
the same in the training sets and test sets. The training sets
are used to train the machine learning model, while the test
sets are used to test the performance of the model after it is
trained.

While it is common practice to impute the missing val-
ues in the data with some type of algorithm, we find that
imputation introduces false information in the feature im-
portance we later calculate, which is also suggested by some
other studies (e.g. Seijo-Pardo et al. 2019; Yu et al. 2022).
Since the XGBoost classifier (Chen & Guestrin 2016) can au-
tomatically handle missing values, we simply input our data
without imputation.

Then, we note that the Type I and Type II GRBs in our
sample are significantly imbalanced by a ratio of ∼ 1 : 10. Be-
cause this apparent ratio could be caused by selection effects,
we should not introduce this ratio to our training data. How-
ever, the commonly used synthetic minority over-sampling
technique (SMOTE) (Chawla et al. 2002) cannot be applied
to data with missing values. Instead, we assign different sam-
ple weights for the two classes calculated with scikit-learn

(Pedregosa et al. 2011).

Finally, we input the training sets into the XGBoost classi-
fier to train the machine learning model. After training, we
use the test set and the commonly used F1 score (van Rijs-
bergen 1979; Sasaki 2007) to assess the performance of our
models. A more intuitive metric, accuracy, is disfavored here
because our data is imbalanced. A model simply predicts all
GRBs as Type II can still score 92% accuracy.

To test which input feature has the best capability in dis-
tinguishing between Type I and II GRBs, we adopt permuta-
tion feature importance (Breiman 2001; Altmann et al. 2010;
Fisher et al. 2019) on the entire dataset. Each time we ran-
domly shuffle the values of one input feature across all data
points, thus removing the correlation between this feature
and the output label. We observe the drop in F1 score and
use it as the importance of the feature. We repeat this pro-
cess 100 times for each feature and take the average from the
trials as the final feature importance. We also draw the error
bars with standard deviations from the trials.
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Feature name Unit Description Log

T90 s Time within which 90% of the fluence of the GRB is observed Y
variability1 — Variability, based on the Fenimore & Ramirez-Ruiz (2000) definition N

F g 10−6 erg cm−2 Fluence in the 20–2000 keV energy band Y
HR — Hardness ratio between 100–2000 keV and 20–100 keV Y

F pk1 10−6 erg cm−2 s−1 Peak flux in the 1 s time bin in the rest-frame 1–10 × 104 keV energy band Y

P pk4 photon cm−2 s−1 Peak photon flux in the 1 s time bin of 10–1000 keV Y
alpha band — Low-energy spectrum index of the Band model N

beta band — High-energy spectrum index of the Band model N

E P band keV Spectral peak energy of the Band model Y
alpha cpl — Spectrum index of the cutoff power-law (CPL) model N

E P cpl keV Spectral peak energy of the cutoff power-law (CPL) model Y

alpha spl — Spectrum index of the simple power-law (SPL) model N
spectral lag ms MeV−1 Spectral time lag N

z — Redshift N

D L 1028 cm Luminosity distance Y
E iso 1052 erg Isotropic gamma-ray energy in the rest-frame 1–10 × 104 keV energy band Y

L pk 1052 erg s−1 Isotropic peak luminosity in the 1 s time bin in
the rest-frame 1–10 × 104 keV energy band

Y

Table 1. List of features used in the prompt emission subgroup. For features with multiple definitions (e.g., variability, F pk), we choose

the one with the most known data. Directly measured features are listed above the horizontal line, while the derived features are listed
below the line.

Feature name Unit Description Log

theta j rad Jet-opening angle Y
Gamma0 — Initial Lorentz factor Y

log t burst s Duration of the GRB central engine Y

t b d Jet break time Y
t pkX s Peak flux time in the X-ray band Y

t pkOpte s Peak of the early optical afterglow light curve Y

t pkOpt s Peak flux time in the optical band Y

F X11hr Jy Flux density in the X-ray band 11 h after the trigger time of the burst Y

beta X11hr — Index in X-ray band 11 h after the trigger time of the burst N
F Opt11hr Jy Flux density in the optical band 11 h after the trigger time of the burst Y

t radio pk s Peak radio time in the afterglow Y

F radio pk Jy Peak flux density in the radio band at 8.46 GHz Y
T ai s Rest-frame time at the end of the plateau phase in log in X-ray Y

L a erg s−1 Isotropic X-ray luminosity at the time Ta Y

Table 2. List of features used in the afterglow subgroup.

Feature name Unit Description Log

offset kpc Distance from the burst location to the center of the host galaxy Y
metallicity — Metallicity of the host; the value is 12 + log[O/H] N

Mag magnitude Absolute magnitude in the 3.6 um rest wavelength N

N H 1021 cm−2 Column density of hydrogen Y
A V — Dust extinction N

SFR M� yr−1 Star formation rate Y

SSFR Gyr−1 Specific star formation rate Y
Age Myr The age of the GRB host galaxy Y
Mass M� Stellar mass Y

Table 3. List of features used in the host galaxy subgroup.

3 RESULTS

3.1 Prompt emission

Many studies suggested adding hardness ratio (HR) to the
T90 classification criterion to form a two-dimensional criteria
will yield better results (e.g. Horváth et al. 2006, 2010; Ř́ıpa
et al. 2012; Zhang et al. 2012; Bhat et al. 2016; Yang et al.
2016; Horváth et al. 2018; Tarnopolski 2019; Zhang et al.
2022b). Similarly, the power-law index or peak energy Ep of
the spectrum of prompt emission can also take the place of

hardness ratio (Zhang et al. 2012; Goldstein et al. 2010; Nava
et al. 2011). In general, Type I GRBs have harder spectra
compared with Type II GRBs. Goldstein et al. (2010) further
proposes classification on the Ep – fluence plane. Since fluence
is highly related to duration, this scheme also follows the HR
- T90 scheme.

Some other studies (e.g. Zhang et al. 2009, 2012; Qin &
Chen 2013; Tsutsui et al. 2013; Minaev & Pozanenko 2020)
suggest that the famous Amati relation (Amati et al. 2002,
2009; Kumar & Zhang 2015) of the peak energy Ep and the

MNRAS 000, 1–10 (2022)
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isotropic energy Eiso of GRB prompt emission are different
for Type I and II GRBs, and thus the Ep – Eiso plane can
be used to distinguish between Type I and II GRBs.

In addition, Norris & Bonnell (2006); Yi et al. (2006);
Gehrels et al. (2006); Zhang (2006); Ukwatta et al. (2010);
Minaev et al. (2014); Bernardini et al. (2015); Shao et al.
(2017) propose to classify Type I and II GRBs based on spec-
tral lag τ and the τ – peak luminosity Lp plane, where Type
I GRBs have smaller spectral lags and peak luminosities.

Association with supernovae (SN) is also a very important
distinguishing factor between Type I and II GRBs, as SN
associations provide smoking-gun evidence of the GRB pro-
genitor. However, the Big Table only contains SN association
information for 22 GRBs. For those GRBs without SN asso-
ciation information, it is unknown whether there truly was
no SN associated with the GRB, or there simply was no ob-
servation, or most likely, there was an optical observation,
but the SN was outshone by the bright optical afterglow. We
find that including SN association makes our results worse,
therefore we do not include SN in our models.

With the prompt emission subgroup, we are able to ob-
tain a F1 score of 0.7838 on the test set, and 0.5882 on the
intermingled GRBs. The corresponding confusion matrices
and feature importance are shown in Figure 1. Our model
can predict most GRBs correctly based on prompt emission
data, and T90 is the most prominent feature, with feature
importance much higher than other features.

However, when we remove T90 from the prompt emission
subgroup and carry out the same analysis, while we get a
lower F1 score of 0.6667 on the test set as expected, but
we also get a higher F1 score of 0.8966 on the intermingled
GRBs. The corresponding confusion matrices and feature im-
portance are shown in Figure 2. This shows that T90 can be
misleading to the machine learning model for intermingled
GRBs, and multiple observational parameters are needed for
more accurate classification of GRBs.

We also find the fluence F g and hardness ratio HR to be
the most important feature after T90. Since fluence is directly
related to the duration, our results confirm the finding of
other studies.

In order to measure the importance of other features, we
further exclude fluence and hardness ratio from our feature
group, and carry out the same machine learning analysis. We
obtain F1 score of 0.5758 on the test set and 0.7333 on the in-
termingled GRBs. The corresponding confusion matrices and
feature importance are shown in Figure 3. While the general
F1 score drops again, the F1 score for intermingled sample
remains high. The most important features are again related
to the spectral shape, such as E iso, alpha cpl, E p cpl and
alpha spl. The flux-related feature of F pk1 and P pk4 are
also important, as well as spectral lag.

3.2 Afterglow

Gehrels et al. (2008); Nysewander et al. (2009); D’Avanzo
et al. (2012); Margutti et al. (2013) pointed out that af-
terglows of Type I GRBs mostly have lower X-ray luminos-
ity and energy and decay faster. There are also correlations
among afterglow X-ray energy, X-ray afterglow luminosity,
prompt emission isotropic energy Eiso, peak luminosity Lp

and peak energy Ep. Combined with the findings mentioned
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Figure 1. Example of confusion matrices and feature importance
for the prompt emission subgroup. Upper: Confusion matrix on
the entire test set; Middle: Confusion matrix on the intermingled
GRBs; Lower: Feature importance on the entire dataset.
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Figure 2. Example of confusion matrices and feature importance
for the prompt emission subgroup without T90. Upper: Confu-
sion matrix on the entire test set; Middle: Confusion matrix on
the intermingled GRBs; Lower: Feature importance on the entire

dataset.
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Figure 3. Example of confusion matrices and feature importance
for the prompt emission subgroup without T90, Fg or HR. Upper:
Confusion matrix on the entire test set; Middle: Confusion ma-
trix on the intermingled GRBs; Lower: Feature importance on the

entire dataset.
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in Section 3.1, X-ray afterglow luminosity can also be em-
ployed for GRB classification.

Kann et al. (2011) found that similar to X-ray, optical af-
terglows of Type I GRBs are significantly fainter than that
of Type II GRBs, and similar afterglow-prompt emission cor-
relations also exist in the optical band.

With the afterglow subgroup, we are able to obtain F1

score of 0.4444 on the test set and 0.875 on the intermingled
GRBs. The corresponding confusion matrices and feature im-
portance are shown in Figure 4. We found the most important
feature to be 11-hour beta index in X-ray. 11-hour fluxes of
X-ray and optical are also important. In general, we find that
afterglow features perform poorly in GRB classification.

3.3 Host galaxy

The different progenitors of Type I and II GRBs also have
a substantial impact on the properties of their host galax-
ies. The short lifetime of Type II GRB progenitors (Woosley
et al. 2002) makes their event rate to generally follow the
star formation rate (SFR) of the host galaxies, and Type II
GRB host galaxies generally have higher SFR. (Bloom et al.
2002; Chary et al. 2007; Savaglio et al. 2009; Levesque et al.
2010a; Robertson & Ellis 2011; Levesque 2014; Wei et al.
2014; Trenti et al. 2015; Cucchiara et al. 2015; Lan et al.
2022). The redshift distribution of Type I GRBs are found
to be delayed with respect to the star formation history, and
thus host galaxies of Type I GRBs generally have lower SFR
respectively (Piran 1992; Nakar et al. 2006; Zheng & Ramirez-
Ruiz 2007; Virgili et al. 2011; Wanderman & Piran 2015; Luo
et al. 2022a).

Type II GRB hosts also have low metallicity, which is re-
quired to form high-mass progenitors. (Fynbo et al. 2003;
Prochaska et al. 2004; Fruchter et al. 2006; Levesque et al.
2010b; Kocevski & West 2011; Mannucci et al. 2011; Campisi
et al. 2011; Graham & Fruchter 2017). Type I GRB hosts,
on the other hand, are found to have higher metallicity (e.g.
Berger 2014).

Type II GRBs usually occur in regions with active star for-
mation and are, therefore, closer to the center of the galaxy
and in brighter regions. Type I GRBs, however, have larger
offsets from the galactic center as the evolution of compact
binary mergers require supernova events that “kick off” the
binary system away from the location where they are formed
(Bloom et al. 2002; Fruchter et al. 2006; Fong et al. 2013;
Blanchard et al. 2016; Wang et al. 2018; Li et al. 2020;
O’Connor et al. 2022; Fong et al. 2022).

With the afterglow subgroup, we are able to obtain F1

score of 0.64 on the test set and 0.9231 on the intermingled
GRBs. The corresponding confusion matrices and feature im-
portance are shown in Figure 5. We found the most important
feature to be offset.

In order to find other important features, we also carry out
the same analysis on the host galaxy subgroup without off-
set. We get F1 score of 0.5714 on the test set and 0.8889 on
the intermingled GRBs with the host galaxy subgroup with-
out offset. The corresponding confusion matrices and feature
importance are shown in Figure 6. Age, A V and stellar mass
are also fairly important. One caveat here is that none of the
Type I GRBs have information of Mag and N H. Thus, more
data is needed to measure the importance of these features
in distinguishing Type I and II GRBs.
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Figure 4. Example of confusion matrices and feature importance
for the afterglow subgroup. Upper: Confusion matrix on the en-
tire test set; Middle: Confusion matrix on the intermingled GRBs;
Lower: Feature importance on the entire dataset.
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Figure 5. Example of confusion matrices and feature importance
for the host galaxy subgroup. Upper: Confusion matrix on the en-
tire test set; Middle: Confusion matrix on the intermingled GRBs;
Lower: Feature importance on the entire dataset.
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Figure 6. Example of confusion matrices and feature importance
for the host galaxy subgroup without offset. Upper: Confusion ma-
trix on the entire test set; Middle: Confusion matrix on the inter-
mingled GRBs; Lower: Feature importance on the entire dataset.
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3.4 Comparing the feature subgroups

Because the training and test set splitting process introduces
randomness to the results, F1 scores from a single trial may
not be able to fully reflect the abilities in distinguishing Type
I and II GRBs for different feature subgroups. Therefore, we
repeat the random splitting and training process 1000 times,
and record the F1 scores of each feature subgroup on the
entire test set and intermingled GRBs.

We report the average F1 scores, along with standard de-
viations based on the 1000 trials for each feature subgroup
on the entire test set and intermingled GRBs in Table 4. We
found that the prompt emission subgroup performs the best
in predicting Type I and II GRBs, while the average F1 score
of the afterglow subgroup is significantly lower. Host galaxy
comes in between the two subgroups. However, prompt emis-
sion including T90 performs the worst on the intermingled
GRBs.

4 PREDICTING UNCLASSIFIED GRBS

After building the models, we then move on to predict the
classes of the unclassified GRBs in the Big Table. Since nearly
all unclassified GRBs do not have afterglow and host galaxy
features measured, we only use the prompt emission features
in this section. We also add T 90, F pk2 (peak flux in the
64 ms bin) and P pk1 (peak photon flux in the 64 ms bin)
to increase the information available to the machine learning
model.

We train the model using the same method described in
Section 2 with all the classified GRBs with at least one feature
we intend to use and T90 known, and use the trained model
to predict the probabilities of the unclassified GRBs being
either class. We also require the unclassified GRBs to have
at least one feature and T90 known. 1533 GRBs are used for
training, and the class probabilities of 3225 unclassified GRBs
are predicted. For each unclassified GRB, the class in which
they are predicted with the highest probability is assigned
as their class. 2502 GRBs are predicted as Type II, while
723 GRBs are predicted as Type I. The prediction results are
listed in Table 5. We also graph the probability distribution
of the unclassified GRBs being Type II in Figure 7.

5 CONCLUSIONS

In this paper, we applied supervised machine methods,
mainly XGBoost, to the classification of Type I and II GRBs.
We come up with the following conclusions:

• Classifying GRBs solely based on T90 can yield unsat-
isfactory results, especially on intermingled GRBs. Criteria
based on multiple observational parameters are needed.

• Machine learning method can effectively classify GRBs,
even intermingled ones.

• The fact that supervised learning with two classes of
GRBs can effectively classify intermingled GRBs indirectly
rejects the existence of a third intermediate GRB class pro-
posed based on duration distribution.

• We found that the best feature group in predicting Type
I or II GRB is prompt emission. Among features on prompt
emission, we found that T90 still separates Type I and II

0.0 0.2 0.4 0.6 0.8 1.0
Type II Probablity

10 1

100

101

De
ns

ity

Figure 7. Probability distribution of the unclassified GRBs being
Type II. The probability for Type I is 1 − the shown value.

GRBs the best. Besides T90, fluence and hardness ratio are
also important features. Since fluence is correlated with T90,
this is consistent with the traditional way of classifying GRBs
on the T90 – HR plane.

• We predict the class of some of the GRBs not present in
Greiner’s catalog. Their predicted class and their probabili-
ties of being either are shown in Table 5.
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Table 4. List of average F1 scores and standard deviations obtained with different feature subgroups.
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Table 5. Prediction results of the unclassified FRBs. The prob-
ability of them being Type I or II are shown as pI and pII re-
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Horváth I., Bagoly Z., Balázs L. G., Postigo A. d. U., Veres P.,
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Lü H.-J., Zhang B., Liang E.-W., Zhang B.-B., Sakamoto T., 2014,
MNRAS, 442, 1922

Luo J.-W., Li Y., Ai S., Gao H., Zhang B., 2022a, MNRAS, 516,
1654

Luo J.-W., Zhu-Ge J.-M., Zhang B., 2022b, MNRAS, 518, 1629

Mannucci F., Salvaterra R., Campisi M. A., 2011, MNRAS, 414,

1263

Margutti R., et al., 2013, MNRAS, 428, 729

Minaev P. Y., Pozanenko A. S., 2020, MNRAS, 492, 1919

Minaev P. Y., Pozanenko A. S., Molkov S. V., Grebenev S. A.,

2014, Astronomy Letters, 40, 235

MNRAS 000, 1–10 (2022)

http://dx.doi.org/10.1007/s10509-022-04068-z
http://dx.doi.org/10.3847/0004-637X/817/2/144
http://dx.doi.org/10.1086/338893
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1088/0004-637X/764/2/179
http://dx.doi.org/10.1088/1475-7516/2022/04/023
http://dx.doi.org/10.1088/1475-7516/2022/04/023
http://dx.doi.org/10.1111/j.1365-2966.2011.19326.x
http://dx.doi.org/10.1086/522692
http://dx.doi.org/10.1613/jair.953
http://arxiv.org/abs/1603.02754
http://dx.doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1603.02754
http://dx.doi.org/10.3847/1538-3881/aae649
http://dx.doi.org/10.1093/mnras/stac1950
http://dx.doi.org/10.1088/0004-637X/804/1/51
http://dx.doi.org/10.1111/j.1365-2966.2012.21489.x
http://dx.doi.org/10.1038/nature05374
http://dx.doi.org/10.3390/universe8080436
http://arxiv.org/abs/astro-ph/0004176
http://dx.doi.org/10.48550/arXiv.astro-ph/0004176
http://arxiv.org/abs/astro-ph/0004176
http://arxiv.org/abs/astro-ph/0004176
http://dx.doi.org/10.1088/0004-637X/769/1/56
http://arxiv.org/abs/2206.01763
http://arxiv.org/abs/2206.01763
http://arxiv.org/abs/2206.01763
http://dx.doi.org/10.1038/nature04787
http://dx.doi.org/10.1051/0004-6361:20030931
http://dx.doi.org/10.1038/nature05375
http://dx.doi.org/10.1038/nature05373
http://dx.doi.org/10.1038/27150
https://ui.adsabs.harvard.edu/abs/1998Natur.395..670G
http://dx.doi.org/10.1038/nature05376
http://dx.doi.org/10.1086/592766
http://dx.doi.org/10.1088/0004-637X/721/2/1329
http://dx.doi.org/10.3847/2041-8213/aa8f41
http://dx.doi.org/10.3847/1538-4357/834/2/170
http://dx.doi.org/10.1088/0004-637X/693/2/1610
http://dx.doi.org/10.1051/0004-6361/201116657
http://dx.doi.org/10.1086/344568
http://dx.doi.org/10.1051/0004-6361:20041129
http://dx.doi.org/10.1088/0004-637X/713/1/552
http://dx.doi.org/10.1007/s10509-018-3274-5
http://dx.doi.org/10.1007/s10509-019-3585-1
http://dx.doi.org/10.3847/2041-8213/ab964d
http://dx.doi.org/10.1088/0004-637X/734/2/96
http://arxiv.org/abs/2208.10015
http://arxiv.org/abs/2208.10015
http://arxiv.org/abs/2208.10015
http://dx.doi.org/10.1088/2041-8205/735/1/L8
http://dx.doi.org/10.1086/186969
https://ui.adsabs.harvard.edu/abs/1993ApJ...413L.101K
http://dx.doi.org/10.1007/s10509-017-3047-6
http://dx.doi.org/10.1016/j.physrep.2014.09.008
http://dx.doi.org/10.3847/1538-4357/ac8fec
http://dx.doi.org/10.1086/674531
http://dx.doi.org/10.1088/0004-6256/139/2/694
http://dx.doi.org/10.1088/0004-6256/140/5/1557
http://dx.doi.org/10.3847/0067-0049/227/1/7
http://dx.doi.org/10.3847/1538-4357/ab96b8
http://dx.doi.org/10.1093/mnras/stu982
http://dx.doi.org/10.1093/mnras/stac2279
http://dx.doi.org/10.1093/mnras/stac3206
http://dx.doi.org/10.1111/j.1365-2966.2011.18459.x
http://dx.doi.org/10.1093/mnras/sts066
http://dx.doi.org/10.1093/mnras/stz3611
http://dx.doi.org/10.1134/S106377371405003X


10 J-W Luo et al.

Modak S., 2021, Astronomy and Computing, 34, 100441

Modak S., Chattopadhyay A. K., Chattopadhyay T., 2018, Com-

munications in Statistics - Simulation and Computation, 47,

1088

Mukherjee S., Feigelson E. D., Jogesh Babu G., Murtagh F., Fraley
C., Raftery A., 1998, ApJ, 508, 314

Nakar E., Gal-Yam A., Fox D. B., 2006, ApJ, 650, 281

Nava L., Ghirlanda G., Ghisellini G., Celotti A., 2011, A&A, 530,
A21

Norris J. P., Bonnell J. T., 2006, ApJ, 643, 266

Nysewander M., Fruchter A. S., Pe’er A., 2009, ApJ, 701, 824

O’Connor B., et al., 2022, MNRAS, 515, 4890

Pedregosa F., et al., 2011, The Journal of Machine Learning Re-

search, 12, 2825

Piran T., 1992, ApJ, 389, L45

Prochaska J. X., et al., 2004, ApJ, 611, 200

Qin Y.-P., Chen Z.-F., 2013, MNRAS, 430, 163

Qin Y., et al., 2012, ApJ, 763, 15
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Mészáros P., 2007, ApJ, 655, L25

Zhang B., et al., 2009, ApJ, 703, 1696

Zhang F.-W., Shao L., Yan J.-Z., Wei D.-M., 2012, ApJ, 750, 88
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